3 виды мембранных потенциалов нейрона. Мембранный потенциал покоя нейрона. Сущность формирования потенциала покоя

Статья на конкурс «био/мол/текст»: Потенциал покоя - это важное явление в жизни всех клеток организма, и важно знать, как он формируется. Однако это сложный динамический процесс, трудный для восприятия целиком, особенно для студентов младших курсов (биологических, медицинских и психологических специальностей) и неподготовленных читателей. Впрочем, при рассмотрении по пунктам, вполне возможно понять его основные детали и этапы. В работе вводится понятие потенциала покоя и выделяются основные этапы его формирования с использованием образных метафор, помогающих понять и запомнить молекулярные механизмы формирования потенциала покоя.

Мембранные транспортные структуры - натрий-калиевые насосы - создают предпосылки для возникновения потенциала покоя. Предпосылки эти - разность в концентрации ионов на внутренней и наружной сторонах клеточной мембраны. Отдельно проявляет себя разность концентрации по натрию и разность концентрации по калию. Попытка ионов калия (K +) выровнять свою концентрацию по обе стороны мембраны приводит к его утечке из клетки и потере вместе с ними положительных электрических зарядов, за счёт чего значительно усиливается общий отрицательный заряд внутренней поверхности клетки. Эта «калиевая» отрицательность составляет бóльшую часть потенциала покоя (−60 мВ в среднем), а меньшую его часть (−10 мВ) составляет «обменная» отрицательность, вызванная электрогенностью самого ионного насоса-обменника.

Давайте разбираться подробнее.

Зачем нам нужно знать, что такое потенциал покоя и как он возникает?

Вы знаете, что такое «животное электричество»? Откуда в организме берутся «биотоки»? Как живая клетка, находящаяся в водной среде, может превратиться в «электрическую батарейку» и почему она моментально не разряжается?

На эти вопросы можно ответить только в том случае, если узнать, как клетка создаёт себе разность электрических потенциалов (потенциал покоя) на мембране.

Совершенно очевидно, что для понимания того, как работает нервная система, необходимо вначале разобраться, как работает её отдельная нервная клетка - нейрон. Главное, что лежит в основе работы нейрона - это перемещение электрических зарядов через его мембрану и появление вследствие этого на мембране электрических потенциалов. Можно сказать, что нейрон, готовясь к своей нервной работе, вначале запасает энергию в электрической форме, а затем использует ее в процессе проведения и передачи нервного возбуждения.

Таким образом, наш самый первый шаг к изучению работы нервной системы - это понять, каким образом появляется электрический потенциал на мембране нервных клеток. Этим мы и займёмся, и назовём этот процесс формированием потенциала покоя .

Определение понятия «потенциал покоя»

В норме, когда нервная клетка находится в физиологическом покое и готова к работе, у неё уже произошло перераспределение электрических зарядов между внутренней и наружной сторонами мембраны. За счёт этого возникло электрическое поле, и на мембране появился электрический потенциал - мембранный потенциал покоя .

Таким образом, мембрана оказывается поляризованной. Это означает, что она имеет разный электрический потенциал наружной и внутренней поверхностей. Разность между этими потенциалами вполне возможно зарегистрировать.

В этом можно убедиться, если ввести внутрь клетки микроэлектрод, соединённый с регистрирующей установкой. Как только электрод попадает внутрь клетки, он мгновенно приобретает некоторый постоянный электроотрицательный потенциал по отношению к электроду, расположенному в окружающей клетку жидкости. Величина внутриклеточного электрического потенциала у нервных клеток и волокон, например, гигантских нервных волокон кальмара, в покое составляет около −70 мВ. Эту величину называют мембранным потенциалом покоя (МПП). Во всех точках аксоплазмы этот потенциал практически одинаков.

Ноздрачёв А.Д. и др. Начала физиологии .

Ещё немного физики. Макроскопические физические тела, как правило, электрически нейтральны, т.е. в них в равных количествах содержатся как положительные, так и отрицательные заряды. Зарядить тело можно, создав в нем избыток заряженных частиц одного вида, например, трением о другое тело, в котором при этом образуется избыток зарядов противоположного вида. Учитывая наличие элементарного заряда (e ), полный электрический заряд любого тела можно представить как q = ±N×e , где N - целое число.

Потенциал покоя - это разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны, когда клетка находится в состоянии физиологического покоя. Его величина измеряется изнутри клетки, она отрицательна и составляет в среднем −70 мВ (милливольт), хотя в разных клетках может быть различной: от −35 мВ до −90 мВ.

Важно учитывать, что в нервной системе электрические заряды представлены не электронами, как в обычных металлических проводах, а ионами - химическими частицами, имеющими электрический заряд. И вообще в водных растворах в виде электрического тока перемещаются не электроны, а ионы. Поэтому все электрические токи в клетках и окружающей их среде - это ионные токи .

Итак, изнутри клетка в покое заряжена отрицательно, а снаружи - положительно. Это свойственно всем живым клеткам, за исключением, разве что, эритроцитов, которые, наоборот, заряжены отрицательно снаружи. Если говорить конкретнее, то получается, что снаружи вокруг клетки будут преобладать положительные ионы (катионы Na + и K +), а внутри - отрицательные ионы (анионы органических кислот, не способные свободно перемещаться через мембрану, как Na + и K +).

Теперь нам всего лишь осталось объяснить, каким же образом всё получилось именно так. Хотя, конечно, неприятно сознавать, что все наши клетки кроме эритроцитов только снаружи выглядят положительными, а внутри они - отрицательные.

Термин «отрицательность», который мы будем применять для характеристики электрического потенциала внутри клетки, пригодится нам для простоты объяснения изменений уровня потенциала покоя. В этом термине ценно то, что интуитивно понятно следующее: чем больше отрицательность внутри клетки - тем ниже в отрицательную сторону от нуля смещён потенциал, а чем меньше отрицательность - тем ближе отрицательный потенциал к нулю. Это намного проще понять, чем каждый раз разбираться в том, что же именно означает выражение «потенциал возрастает» - возрастание по абсолютному значению (или «по модулю») будет означать смещение потенциала покоя вниз от нуля, а просто «возрастание» - смещение потенциала вверх к нулю. Термин «отрицательность» не создаёт подобных проблем неоднозначности понимания.

Сущность формирования потенциала покоя

Попробуем разобраться, откуда берётся электрический заряд нервных клеток, хотя их никто не трёт, как это делают физики в своих опытах с электрическими зарядами.

Здесь исследователя и студента поджидает одна из логических ловушек: внутренняя отрицательность клетки возникает не из-за появления лишних отрицательных частиц (анионов), а, наоборот, из-за потери некоторого количества положительных частиц (катионов)!

Так куда же деваются из клетки положительно заряженные частицы? Напомню, что это покинувшие клетку и скопившиеся снаружи ионы натрия - Na + - и калия - K + .

Главный секрет появления отрицательности внутри клетки

Сразу откроем этот секрет и скажем, что клетка лишается части своих положительных частиц и заряжается отрицательно за счёт двух процессов:

  1. вначале она обменивает «свой» натрий на «чужой» калий (да-да, одни положительные ионы на другие, такие же положительные);
  2. потом из неё происходит утечка этих «наменянных» положительных ионов калия, вместе с которыми из клетки утекают положительные заряды.

Эти два процесса нам и надо объяснить.

Первый этап создания внутренней отрицательности: обмен Na + на K +

В мембране нервной клетки постоянно работают белковые насосы-обменники (аденозинтрифосфатазы, или Na + /K + -АТФазы), встроенные в мембрану. Они меняют «собственный» натрий клетки на наружный «чужой» калий.

Но ведь при обмене одного положительного заряда (Na +) на другой такой же положительный заряд (K +) никакого дефицита положительных зарядов в клетке возникать не может! Правильно. Но, тем не менее, из-за этого обмена в клетке остаётся очень мало ионов натрия, потому что они почти все ушли наружу. И в то же время клетка переполняется ионами калия, которые в неё накачали молекулярные насосы. Если бы мы могли попробовать на вкус цитоплазму клетки, мы бы заметили, что в результате работы насосов-обменников она превратилась из солёной в горько-солёно-кислую, потому что солёный вкус хлорида натрия сменился сложным вкусом довольно-таки концентрированного раствора хлорида калия. В клетке концентрация калия достигает 0,4 моль/л. Растворы хлорида калия в пределах 0,009–0,02 моль/л имеют сладкий вкус, 0,03–0,04 - горький, 0,05–0,1 - горько-солёный, а начиная с 0,2 и выше - сложный вкус, состоящий из солёного, горького и кислого .

Важно здесь то, что обмен натрия на калий - неравный . За каждые отданные клеткой три иона натрия она получает всего два иона калия . Это приводит к потере одного положительного заряда при каждом акте ионного обмена. Так что уже на этом этапе за счёт неравноценного обмена клетка теряет больше «плюсов», чем получает взамен. В электрическом выражении это составляет примерно −10 мВ отрицательности внутри клетки. (Но помните, что нам надо ещё найти объяснение для оставшихся −60 мВ!)

Чтобы легче было запомнить работу насосов-обменников, образно можно выразиться так: «Клетка любит калий!» Поэтому клетка и затаскивает калий к себе, несмотря на то, что его и так в ней полно. И поэтому она невыгодно обменивает его на натрий, отдавая 3 иона натрия за 2 иона калия. И поэтому она тратит на этот обмен энергию АТФ. И как тратит! До 70% всех энергозатрат нейрона может уходить на работу натрий-калиевых насосов. (Вот что делает любовь, пусть она даже и не настоящая!)

Кстати, интересно, что клетка не рождается с готовым потенциалом покоя. Ей его ещё надо создать. Например, при дифференцировке и слиянии миобластов потенциал их мембраны изменяется от −10 до −70 мВ, т.е. их мембрана становится более отрицательной - поляризуется в процессе дифференцировки. А в экспериментах на мультипотентных мезенхимальных стромальных клетках костного мозга человека искусственная деполяризация, противодействующая потенциалу покоя и уменьшающая отрицательность клеток, даже ингибировала (угнетала) дифференцировку клеток .

Образно говоря, можно выразиться так: Создавая потенциал покоя, клетка «заряжается любовью». Это любовь к двум вещам:

  1. любовь клетки к калию (поэтому клетка насильно затаскивает его к себе);
  2. любовь калия к свободе (поэтому калий покидает захватившую его клетку).

Механизм насыщения клетки калием мы уже объяснили (это работа насосов-обменников), а механизм ухода калия из клетки объясним ниже, когда перейдём к описанию второго этапа создания внутриклеточной отрицательности. Итак, результат деятельности мембранных ионных насосов-обменников на первом этапе формирования потенциала покоя таков:

  1. Дефицит натрия (Na +) в клетке.
  2. Избыток калия (K +) в клетке.
  3. Появление на мембране слабого электрического потенциала (−10 мВ).

Можно сказать так: на первом этапе ионные насосы мембраны создают разность концентраций ионов, или градиент (перепад) концентрации, между внутриклеточной и внеклеточной средой.

Второй этап создания отрицательности: утечка ионов K + из клетки

Итак, что начинается в клетке после того, как с ионами поработают её мембранные натрий-калиевые насосы-обменники?

Из-за образовавшегося дефицита натрия внутри клетки этот ион при каждом удобном случае норовит устремиться внутрь : растворённые вещества всегда стремятся выровнять свою концентрацию во всём объёме раствора. Но это у натрия получается плохо, поскольку ионные натриевые каналы обычно закрыты и открываются только при определённых условиях: под воздействием специальных веществ (трансмиттеров) или при уменьшении отрицательности в клетке (деполяризации мембраны).

В то же время в клетке имеется избыток ионов калия по сравнению с наружной средой - потому что насосы мембраны насильно накачали его в клетку. И он, тоже стремясь уравнять свою концентрацию внутри и снаружи, норовит, напротив, выйти из клетки . И это у него получается!

Ионы калия K + покидают клетку под действием химического градиента их концентрации по разные стороны мембраны (мембрана значительно более проницаема для K + , чем для Na +) и уносят с собой положительные заряды. Из-за этого внутри клетки нарастает отрицательность.

Тут ещё важно понять то, что ионы натрия и калия как бы «не замечают» друг друга, они реагируют только «на самих себя». Т.е. натрий реагирует на концентрацию натрия же, но «не обращает внимания» на то, сколько вокруг калия. И наоборот, калий реагирует только на концентрацию калия и «не замечает» натрий. Получается, что для понимания поведения ионов надо по отдельности рассматривать концентрации ионов натрия и калия. Т.е. надо отдельно сравнить концентрацию по натрию внутри и снаружи клетки и отдельно - концентрацию по калию внутри и снаружи клетки, но не имеет смысла сравнивать натрий с калием, как это, бывает, делается в учебниках.

По закону выравнивания химических концентраций, который действует в растворах, натрий «хочет» снаружи войти в клетку; туда же его влечёт и электрическая сила (как мы помним, цитоплазма заряжена отрицательно). Хотеть-то он хочет, но не может, так как мембрана в обычном состоянии плохо его пропускает. Натриевые ионные каналы, имеющиеся в мембране, в норме закрыты. Если все же его заходит немножко, то клетка сразу же обменивает его на наружный калий с помощью своих натрий-калиевых насосов-обменников. Получается, что ионы натрия проходят через клетку как бы транзитом и не задерживаются в ней. Поэтому натрий в нейронах всегда в дефиците.

А вот калий как раз может легко выходить из клетки наружу! В клетке его полно, и она его удержать не может. Он выходит наружу через особые каналы в мембране - «калиевые каналы утечки», которые в норме открыты и выпускают калий .

К + -каналы утечки постоянно открыты при нормальных значениях мембранного потенциала покоя и проявляют взрывы активности при сдвигах мембранного потенциала, которые длятся несколько минут и наблюдаются при всех значениях потенциала. Усиление К + -токов утечки ведёт к гиперполяризации мембраны, тогда как их подавление - к деполяризации. ...Однако, существование канального механизма, ответственного за токи утечки, долгое время оставалось под вопросом. Только сейчас стало ясно, что калиевая утечка - это ток через специальные калиевые каналы.

Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология) .

От химического - к электрическому

А теперь - ещё раз самое главное. Мы должны осознанно перейти от движения химических частиц к движению электрических зарядов .

Калий (K +) положительно заряжен, и поэтому он, когда выходит из клетки, выносит из неё не только самого себя, но и положительный заряд. За ним изнутри клетки к мембране тянутся «минусы» - отрицательные заряды. Но они не могут просочиться через мембрану - в отличие от ионов калия - т.к. для них нет подходящих ионных каналов, и мембрана их не пропускает. Помните про оставшиеся необъяснёнными нами −60 мВ отрицательности? Это и есть та самая часть мембранного потенциала покоя, которую создаёт утечка ионов калия из клетки! И это - большая часть потенциала покоя.

Для этой составной части потенциала покоя есть даже специальное название - концентрационный потенциал . Концентрационный потенциал - это часть потенциала покоя, созданная дефицитом положительных зарядов внутри клетки, образовавшимся за счёт утечки из неё положительных ионов калия .

Ну, а теперь немного физики, химии и математики для любителей точности.

Электрические силы связаны с химическими по уравнению Гольдмана. Его частным случаем является более простое уравнение Нернста , по формуле которого можно рассчитать трансмембранную диффузионную разность потенциалов на основе различной концентрации ионов одного вида по разные стороны мембраны. Так, зная концентрацию ионов калия снаружи и внутри клетки, можно рассчитать калиевый равновесный потенциал E K:

где Е к - равновесный потенциал, R - газовая постоянная, Т - абсолютная температура, F - постоянная Фарадея, К + внеш и K + внутр - концентрации ионов К + снаружи и внутри клетки, соответственно. По формуле видно, что для расчёта потенциала между собой сравниваются концентрации ионов одного вида - K + .

Более точно итоговая величина суммарного диффузионного потенциала, который создаётся утечкой нескольких видов ионов, рассчитывается по формуле Гольдмана-Ходжкина-Катца. В ней учтено, что потенциал покоя зависит от трех факторов: (1) полярности электрического заряда каждого иона; (2) проницаемости мембраны Р для каждого иона; (3) [концентраций соответствующих ионов] внутри (внутр) и снаружи мембраны (внеш). Для мембраны аксона кальмара в покое отношение проводимостей Р K: PNa :P Cl = 1: 0,04: 0,45 .

Заключение

Итак, поте нциал покоя состоит из двух частей:

  1. −10 мВ , которые получаются от «несимметричной» работы мембранного насоса-обменника (ведь он больше выкачивает из клетки положительных зарядов (Na +), чем закачивает обратно с калием).
  2. Вторая часть - это всё время утекающий из клетки калий, уносящий положительные заряды. Его вклад - основной: −60 мВ . В сумме это и дает искомые −70 мВ.

Что интересно, калий перестанет выходить из клетки (точнее, его вход и выход уравниваются) только при уровне отрицательности клетки −90 мВ. В этом случае сравняются химические и электрические силы, проталкивающие калий через мембрану, но направляющие его в противоположные стороны. Но этому мешает постоянно подтекающий в клетку натрий, который несёт с собой положительные заряды и уменьшает отрицательность, за которую «борется» калий. И в итоге в клетке поддерживается равновесное состояние на уровне −70 мВ.

Вот теперь мембранный потенциал покоя окончательно сформирован.

Схема работы Na + /K + -АТФазы наглядно иллюстрирует «несимметричный» обмен Na + на K + : выкачивание избыточного «плюса» в каждом цикле работы фермента приводит к отрицательному заряжению внутренней поверхности мембраны. Чего в этом ролике не сказано, так это того, что АТФаза ответственна за менее чем 20% потенциала покоя (−10 мВ): оставшаяся «отрицательность» (−60 мВ) появляется за счет выхода из клетки через «калиевые каналы утечки» ионов K + , стремящихся выровнять свою концентрацию внутри клетки и вне нее.

Литература

  1. Jacqueline Fischer-Lougheed, Jian-Hui Liu, Estelle Espinos, David Mordasini, Charles R. Bader, et. al.. (2001). Human Myoblast Fusion Requires Expression of Functional Inward Rectifier Kir2.1 Channels . J Cell Biol . 153 , 677-686;
  2. Liu J.H., Bijlenga P., Fischer-Lougheed J. et al. (1998). Role of an inward rectifier K + current and of hyperpolarization in human myoblast fusion . J. Physiol. 510 , 467–476;
  3. Sarah Sundelacruz, Michael Levin, David L. Kaplan. (2008). Membrane Potential Controls Adipogenic and Osteogenic Differentiation of Mesenchymal Stem Cells . PLoS ONE . 3 , e3737;
  4. Павловская М.В. и Мамыкин А.И. Электростатика. Диэлектрики и проводники в электрическом поле. Постоянный ток / Электронное пособие по общему курсу физики. СПб: Санкт-Петербургский государственный электротехнический университет;
  5. Ноздрачёв А.Д., Баженов Ю.И., Баранникова И.А., Батуев А.С. и др. Начала физиологии: Учебник для вузов / Под ред. акад. А.Д. Ноздрачёва. СПб: Лань, 2001. - 1088 с.;
  6. Макаров А.М. и Лунева Л.А. Основы электромагнетизма / Физика в техническом университете. Т. 3;
  7. Зефиров А.Л. и Ситдикова Г.Ф. Ионные каналы возбудимой клетки (структура, функция, патология). Казань: Арт-кафе, 2010. - 271 с.;
  8. Родина Т.Г. Сенсорный анализ продовольственных товаров. Учебник для студентов вузов. М.: Академия, 2004. - 208 с.;
  9. Кольман Я. и Рем К.-Г. Наглядная биохимия. М.: Мир, 2004. - 469 с.;
  10. Шульговский В.В. Основы нейрофизиологии: Учебное пособие для студентов вузов. М.: Аспект Пресс, 2000. - 277 с..

Различная концентрация веществ внутри и вне клетки является одним из важнейших признаков жизни. Всякая клетка, находящаяся в полном концентрационном равновесии с окружающей ее средой, мертва. Правда, многие вещества, в первую очередь вода, проникают в клетку по градиенту их концентраций. Однако имеется огромное количество веществ, не следующих этому правилу.

Если разделить различные вещества на классы в соответствии с их проницаемостью, то среди них можно выделить следующие основные группы.Неполярные вещества , характеризующиеся равномерным распределением электронов между атомами, образующими молекулу.Неполные полярные соединения , в которых электроны, связывающие атомы, больше притягиваются к одному из них, вследствие чего молекула превращается в диполь.Ионные соединения, или электролиты , где валентные электроны связаны лишь с одним из атомов или радикалов. В средах, обладающих высокой диэлектрической постоянной, эти связи сильно ослабляются, и отдельные части молекулы ведут себя как самостоятельные ионы. Здесь происходит диссоциация электролита на ионы: положительные - анионы и отрицательные - катионы.

Оставив в стороне вопрос о проникновении в клетку соединений двух первых классов, остановимся более подробно на характере проникновения и распределения различных ионов между клеткой и окружающей ее средой, поскольку именно это распределение лежит в основе мембранного потенциала (МП) клетки.

В настоящее время экспериментально доказано, что содержимое клетки заряжено отрицательно по отношению к ее наружной поверхности и окружающей среде. Этот заряд неодинаков у различных клеток и в большинстве случаев колеблется в пределах от -50 до -100 мв (табл. 9). Наличие электрического заряда указывает на неодинаковое распределение электролитов по обе стороны клеточной поверхностной мембраны, которое принято называть ионной асимметрией.


Таблица 9. Величины мембранных потенциалов (МП) различных возбудимых клеток (по Латманизовой, 1965)

Каким образом возникает ионная асимметрия по разные стороны клеточной мембраны? Для выяснения этого вопроса следует хотя бы в общей форме рассмотреть поведение электролитов при прохождении через любую полупроницаемую перепонку.

Все растворенные вещества, в том числе и ионизированные, перемещаются (в случае неравномерного распределения в растворе) согласно градиенту концентрации от участков с более высокой концентрацией к участкам с меньшей концентрацией. Если участки раствора с неодинаковой концентрацией разделены какой-либо мембраной, то диффузия растворенных веществ более или менее замедляется. Ионные компоненты растворенных электролитов - анионы и катионы - нередко обладают разной проницаемостью, а следовательно, и разной подвижностью. Это связано с размерами и конфигурацией ионов, а также с величиной их гидратных оболочек. Например, образующиеся при диссоциации поваренной соли катион Na + и анион Сl - обладают различной подвижностью. Подвижность и проницаемость Na + гораздо ниже, чем Сl - . Это соответствует размерам их гидратированных диаметров 2.14 Å для Сl - и 3.4 Å для Na + . При диффузионном проникновении через мембрану из района более высокой концентрации электролита в район меньшей его концентрации ионы Сl - будут переходить на другую сторону мембраны гораздо скорее ионов Na + , так что одна из ее поверхностей на некоторое время зарядится положительно, а другая - отрицательно.

Если мембрана окажется проницаемой только для ионов Сl - и непроницаемой для ионов Na + , то возникает уже не временная, а постоянная разность потенциалов между растворами по обе стороны мембраны. Такая разность потенциалов носит названиеконцентрационной разности потенциалов и может быть рассчитана по уравнению Нернста:


где Е - разность потенциалов, в мв; R - газовая постоянная; Т - абсолютная температура; n - валентность; С 1 - более высокая, С 2 - более низкая из двух концентраций; F - число Фарадея.

Приведенные закономерности касаются того случая, когда находящиеся по обе стороны полупроницаемой мембраны растворы содержат одни и те же ионы, но в разных концентрациях.

Однако, как известно, протоплазма клетки и внеклеточной жидкости различаются не только по концентрациям, но и по составу ионов, поэтому представления о концентрационном потенциале недостаточны для объяснения событий, разыгрывающихся в районе клеточной мембраны.

Рассмотрим упрощенный случай, более близкий к реальным соотношениям электролитов в клетке. Допустим, что некая мембрана разделяет два разных электролита NaCl и КСl одинаковой концентрации:

Допустим также, что эта мембрана проницаема как для анионов Сl - , так и для обоих катионов, однако ее проницаемость для К + значительно выше, чем для Na + . Тогда К + как более подвижный ион распределяется равномерно по обе стороны мембраны гораздо скорее, чем Na + , и на все время оставания в уравнивании концентраций Na + одна из сторон мембраны, а именно та, где первоначально находился NaCl, зарядится положительно по отношению к противоположной стороне. Возникающий таким путем потенциал принято называть химическим потенциалом. Если бы мембрана была полностью непроницаемой для Na + , то этот потенциал стал бы постоянным.

В случае клеточного МП все процессы носят гораздо более сложный характер. Прежде всего электролитный состав внутриклеточной и внеклеточной среды довольно сложен и, помимо КCl и NaCl, содержит ряд других ионов, среди которых особенно важную роль в создании мембранного потенциала играют крупные органические анионы, неспособные проникать через клеточную оболочку. Приблизительные концентрации различных ионов в мышечной клетке млекопитающих приведены в табл. 10.



Таблица 10. Приблизительные концентрации ионов и потенциалы равновесия в мышечном волокне млекопитающих и внеклеточной жидкости (по J. W. Woodbury, 1963)

* (Рассчитано по мембранному потенциалу с помощью уравнения Нернста. )

Как видно из таблицы, внеклеточная среда характеризуется относительно высокой концентрацией ионов Na + и Сl - и низкой концентрацией ионов К + . Внутриклеточная среда, наоборот, содержит незначительные количества Na + и Сl - , но отличается высоким содержанием К + . Кроме того, внутри клетки содержится свыше 150 мМ высокомолекулярных органических анионов А - на 1 л внутриклеточной воды, по-видимому, белкового происхождения. Поэтому при построении дальнейших рассуждений необходимо принять во внимание этот дополнительный фактор.

На рис. 20 представлена очень упрощенная схема процессов, происходящих на клеточной мембране. При рассмотрении схемы делается допущение, что мембрана непроницаема не только для высокомолекулярных анионов А - , но и для ионов Na + .



Рис. 20. Формирование трансмембранного потенциала под влиянием концентрационных градиентов. (Woodbury, 1963). Размеры символов в правой и левой колонках указывают на относительную концентрацию ионов во вне- и внутриклеточной жидкости. Пунктирные стрелки и кружки - направление движения ионов, К + , A - , Na + и Сl - при перемещении К + или Сl - через мембранные поры. Остальные объяснения в тексте

Пусть в какой-то исходный момент времени по обе стороны мембраны среда с растворенными в ней ионами электрически нейтральна, т. е. положительные и отрицательные частицы по обе стороны мембраны уравновешивают друг друга. Проследим поведение частиц, способных проникать через "мембранные поры". * Ввиду высокой внутриклеточной концентрации ионов К + эти ионы будут диффундировать через клеточную мембрану изнутри кнаружи в соответствии с градиентом концентрации. Уравновешивающие электрический заряд ионов К + высокомолекулярные анионы не могут их сопровождать ввиду того, что мембрана для них непроницаема. Ионы Na + также не могут заменить их во внутриклеточной среде, так как, согласно допущению, они не проникают через мембрану снаружи внутрь. В результате возникает частичное разделение зарядов вокруг мембраны. Наружная ее сторона в результате появившегося избытка калия во внеклеточной среде начинает заряжаться положительно, а внутренняя сторона из-за появления не нейтрализованных калием высокомолекулярных ионов А - заряжается отрицательно. В районе мембраны возникает электрическое поле, которое начинает вмешиваться в происходящий процесс, поскольку диффундирующие ионы К + имеют заряд. Как известно, одноименные электрические заряды отталкиваются, поэтому возникающий во внеклеточной среде положительный заряд начинает противодействовать дальнейшему поступлению ионов К + изнутри клетки наружу. Таким образом, диффузия К + из клетки наружу вызывает возникновение электростатических сил, препятствующих первичному диффузионному процессу, т. е. создается отрицательная обратная связь, ограничивающая выход К + из клетки. Когда положительный потенциал внешней среды по отношению к соответственно нарастающему внутриклеточному отрицательному потенциалу достигает определенной величины, устанавливается динамическое равновесие между числом выходящим из клетки ионов К + и числом этих ионов, входящих в клетку. Соответствующую этому моменту разность потенциалов по обе стороны мембраны обычно обозначают какпотенциал равновесия для данного иона . Из хода рассуждений ясно, что его величина зависит от соотношений внутренней и наружной концентрации этого иона и может быть вычислена из уравнения Нернста.

* (Выражение "мембранные поры" не следует понимать буквально, как отверстия определенной величины. Неодинаковая проницаемость мембраны к различным частицам, по-видимому, связана со сложным взаимодействием между молекулами мембраны и этими частицами. Тем не менее размер проникающих частиц, как будет видно из дальнейшего изложения, играет существенную роль. )

Аналогичные рассуждения можно провести в отношении иона Сl - . Этот анион начинает поступать в условный исходный момент снаружи внутрь в связи с его относительно высокой концентрацией во внеклеточной жидкости. При этом внутри клетки создается отрицательный заряд, а на наружной поверхности мембраны - положительный. Как и в случае с К + , создается отрицательная обратная связь, в конце концов ограничивающая поступление ионов Сl - внутрь клетки по достижении потенциала равновесия между наружной и внутренней средой.

Естественно, что процесс выхода К + из клетки и процесс вхождения в клетку ионов Сl - находится во взаимодействии и уровень устанавливающейся разности потенциалов определяется совокупностью происходящих событий.

На приведенной схеме не трудно разобраться в некоторых механизмах формирования МП покоящейся живой клетки. * Количественные расчеты с использованием уравнения Нернста показывают, что ионы Сl - и К + распределяются по обе стороны мембраны приблизительно в соответствии с величиной МП, так что электрические и концентрационные градиенты уравновешивают друг друга.

* (Покоящейся условно называется клетка, не реализующая своей специфической деятельности. Как будет видно из дальнейшего, понятие покоя является физиологической абстракцией. )

Действительно описанный механизм возникновения МП мог бы иметь место, если бы мембрана клетки была полностью непроницаема для ионов Na + . Однако изящные и строгие исследования Ходжкина и Кейнса (Keynes, 1954; Hodgkin a. Keynes, 1955) с использованием радиоактивного изотопа натрия Na24 показали, что клеточная мембрана проницаема для Na + , хотя его проницаемость приблизительно в 50 раз ниже проницаемости для К + и Сl - . На икроножной мышце лягушки экспериментально было показано (Keynes, 1954), что за секунду через 1 см 2 клеточной поверхности внутрь мышечного волокна проникает около 10 -11 M Na + . При таком "втекании" Na + внутрь клетки без соответствующего "вытекания" из нее его внутриклеточная концентрация в течение часа должна была бы удвоиться. Однако этого на самом деле не происходит, хотя и концентрационный и электрический градиенты "понуждают" Na + поступать внутрь клетки. Следовательно, должны существовать какие-то специальные механизмы, обеспечивающие прохождение ионов Na + через мембрану против электрохимического градиента, т. е. изнутри наружу. Эти механизмы получили название активного переноса. Для осуществления последнего необходима постоянная затрата энергии, вырабатывающейся в результате клеточных метаболических процессов.

К сожалению, до сих пор остается невыясненным, каким образом энергия клеточного метаболизма используется при активном переносе, однако имеются достаточно четкие экспериментальные данные об участии в этом процессе аденозинтрифосфата и некоторых других фосфатов (Caldwell a. Keynes, 1957; Caldwell, Hodgkin, Keynes a. Shaw, 1960a; Hogdkin, 1964).

Прямую связь между активным переносом и обменом веществ впервые показали Ходжкин и Кейнс (Hodgkin a. Keynes, 1955) в своих исследованиях на гигантском аксоне каракатицы (sepia). Методика исследования основывалась на использовании радиоизотопа натрия - Na 24 и позволила выявить ряд интересных закономерностей активного переноса. Прежде всего оказалось, что ингибиторы обмена веществ (динитрофенол, цианид, азид), блокирующие определенные звенья обменных окислительных реакций, почти полностью подавляют процесс выведения Na + из клетки * . Аналогично действует снижение температуры препарата, резко уменьшающее уровень обменных процессов (рис. 21).

* (В последнее время показано также блокирующее действие азида на активный перенос ионов Na + в мотонейронах спинного мозга кошек (Ito a. Oshima, 1964). )


Рис. 21. Выход ионов Na + из гигантского аксона (каракатицы) при изменении состава омывающего раствора добавлением динитрофенола (ДНФ) (А) и изменении температуры (Б) (Hodgkin a. Keynes, 1955). По оси абсцисс - время, в мин.; по оси ординат - выход радиоактивного Na 24 из клетки, измеренный в импульсах в мин. Общий выход N + (радиоактивного и обычного) пропорционален выходу радиоактивного Na + , исключая те изменения, которые возникают в результате постепенного разведения радиоактивного Na + обычным ввиду естественных ионнообменных процессов (это постепенное падение концентрации радиоактивного Na + показано в графе "морская вода")

Далее было обнаружено, что выведение Na + в общем пропорционально его внутренней концентрации и не зависит от его наружной концентрации. В то же время выход Na + резко уменьшается при снижении концентрации калия во внешней среде и увеличивается при повышении внешней концентрации К + . Эта зависимость также показана на рис. 21. Кроме того, выяснилось, что метаболические яды снижают также поступление К + из внешней среды внутрь аксона и что этот процесс блокируется указанными воздействиями почти в такой же степени, как выведение Na + из клетки. Все это позволило сделать заключение, что механизм активного переноса работает по принципу электронейтральности, "вынося" ионы Na + из клетки и "внося" в клетку эквивалентное количество ионов К + (Hodgkin, 1958). *

* (Позднее было обнаружено, что связь между выведением Na + и введением внутрь клетки К + при активном переносе довольно свободная, во всяком случае не абсолютно жесткого типа (один к одному), как это предполагалось вначале (Caldwell, Hodgkin, Keynes a. Shaw, 1960a, 1960b). До последнего времени считалось, что активный перенос определяется уровнем внутренней концентрации Na + (Hodkin a. Keynes, 1956; Hodgkin, 1958). В последних работах Экклса и его сотрудников приводятся данные о том, что калиевый компонент активного переноса активируется снижением внутренней концентрации К и что при этом внутрь клетки активно переносится КСl (Eccles, 1964; Eccles, Eccles a. Ito, 1964). )

Возникает вопрос, как может механизм, основанный на принципе электронейтральности, создавать поляризацию мембраны. Это не трудно понять, если учесть, что внутри клетки имеет место значительное количество высокомолекулярных анионов А - и что проницаемость ионов Na + в 50 раз ниже проницаемости ионов К + . Будучи выведен из клетки механизмом активного переноса, натрий благодаря диффузии возвращается в клетку в 50 раз медленнее, чем введенный внутрь клетки калий выходит из нее в виде диффузионного потока. К тому же калий диффундирует из клетки в сопровождении нейтрализующего его иона Сl - . В результате перечисленных процессов абсолютное количество положительных ионов внутри клетки убывает: активно выводится Na + и пассивно - сопровождаемый ионами Сl - калий. В клетке возникает избыток отрицательных зарядов благодаря наличию высокомолекулярных ионов А - .

Это, конечно, весьма упрощенная система рассуждений. Тем не менее она в общих чертах отражает существо явлений, не касаясь некоторых усложняющих деталей, например, вопроса о распределении в этих условиях воды.

Существует много различных гипотез, в которых делается попытка объяснить механизм активного переноса, однако ни одна из них не доказана экспериментально. Наиболее привлекательны схемы с так называемым "промежуточным носителем". В качестве примера можно привести схему Шоу-Глинна (Glynn, 1957) (рис. 22) Преимущество такой схемы заключается в том, что она не предполагает жесткой связи между выведением Na + и поступлением в клетку К + . Так, сохранение частичного выведения Na + при полном отсутствии К + во внешней среде может быть объяснено тем, что Na + имеет также некоторое сродство и к субстанциих . Гипотетическая схема должна объяснять такую возможность, поскольку выведение Na + действительно частично сохраняется даже при полном отсутствии К + во внеклеточной среде.



Рис. 22. Гипотетическая схема калий-натриевого обменного "насоса". (Glynn, 1957). Предполагается, что субстанции X и Y функционируют внутри мембраны. X обладает большим сродством к К + ; Y обладает большим сродством к Na + . X и У перемещаются через мембрану только в комбинации с соответствующим ионом

До сих пор все явления и механизмы, связанные с генерацией МП, в целях простоты изложения описывались лишь с качественной стороны. Однако для более ясного представления о происходящих процессах целесообразно привести некоторые количественные характеристики поляризации мембраны, тем более что это позволит также составить более четкое представление об объеме происходящих ионообменных процессов. *

* (Нижеследующий цифровой материал взят из "Нейрофизиологии" Т. Ру и соавторов (Ruch et al., 1963). )

Емкость мембраны поперечнополосатого мышечного волокна лягушки определена в эксперименте и составляет около 10 мкф на см 2 . Величина заряда мембраны - этого биологического конденсатора - определяется величиной разности потенциалов по обе стороны мембраны (Е м) и ее емкостью (С м): q = C м ⋅ Е м. Е м примем за 90 мв. Тогда заряд q = 10 × 10 -6 ф/см 2 × 0.09 в = 9 × 10 -7 кулонов на 1 см 2 . Если пересчитать полученную величину заряда на число ионов, участвующих в его формировании, то получаются следующие результаты.

По закону Авогадро 1 граммолекула содержит 6.023 × 10 23 молекул. В данном случае мы имеем дело с одновалентными ионами, несущими на себе 1 ед. заряда, равную по величине заряду одного электрона. Заряд электрона, выраженный в кулонах, составляет 1.6 × 10 -19 . Тогда заряд одного моля одновалентных катионов составляет 1.6 × 10 -19 × 6.023 × 10 23 = 96500 кулонов. Поскольку заряд на клеточной мембране мышечного волокна составляет 9 × 10 -7 кулонов см 2 , то это означает, что эта мембрана на участке 1 см 2 разделяет всего 9 × 10 -7 /96500 = 9.5 × 10 -12 моля ионизированных одновалентных частиц. В то же время в 1 см 3 внутриклеточной жидкости содержится 1.5 × 10 -6 моля катионов или анионов, т. е. в несколько миллионов раз больше. Подсчеты показывают, что слой внутриклеточной жидкости толщиной всего в 6 Å обеспечивает достаточное количество ионов, чтобы создать на мембране потенциал в 90 мв.

Эти величины поясняют, какое незначительное количество ионов от их общего числа в клетке принимает участие в поддержании МП и, как это будет показано ниже, в генерации потенциала действия.

Следует также отметить, что клетка располагает достаточными энергетическими возможностями для осуществления активного переноса Na + . Кейнс и Майзель (Keynes a. Maisel, 1954) экспериментально показали, что расход энергии на активный перенос Na + в скелетной мышце лягушки значительно меньше общих энергетических расходов клетки, рассчитанных по потреблению кислорода. * В большинстве опытов в покоящейся мышце только около 10% энергетических расходов идет на активное выведение Na + . Если принять, что коэффициент полезного действия при активном переносе составляет только 50% или даже меньше, то все равно энергетический расход на этот процесс образует относительно небольшую часть энергии, вырабатываемой клеткой. Эти количественные данные существенно подкрепляют концепцию механизма активного переноса, показывая, что с точки зрения энергетического баланса клетки подобный процесс вполне возможен.

17 ..

Сигнал по мембране нейрона передается в виде коротких элект-рических импульсов – потенциалов действия (ПД). Этот процесс можно сравнить с передачей информации с помощью включения и выключения фонарика (ПД = «вспышка света»).

Но для того, чтобы фонарик работал, нужна батарейка – источник электрической энергии. В случае нейрона таким источником является постоянный внутриклеточный заряд – потенциал покоя (ПП).

Нервные клетки ограничены липопротеиновой мембраной, являющейся электрическим изолятором. Между содержимым клетки и внеклеточной жидкостью существует разность потенциалов, так называемый мембранный потенциал.

В клетке как в единой системе все части - цитоплазма, ядро, органоиды - должны удерживаться вместе. Для этого в процессе эволюции развилась клеточная мембрана, которая, окружая каждую клетку, отделяет ее от внешней среды. Наружная мембрана защищает внутреннее содержимое клетки - цитоплазму и ядро - от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена. Строение мембраны у всех клеток одинаково. Ее толщина составляет приблизительно 8 нм (1 нм =10Ý(-9)м).

Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Одни белки находятся на поверхности липидного слоя, другие пронизывают оба слоя липидов насквозь. Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из нее могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие небольшой диаметр. Однако более крупные частицы через мембранные каналы пройти не могут.

В состоянии покоя наружная поверхность клетки всегда электроположительна по отношению к внутренней, т.е. поляризована. Эта разность потенциалов, называется потенциалом покоя, или мембранным потенциалом (МП). В образовании потенциала принимают участие 4 вида ионов: катионы натрия (положительный заряд), катионы калия (положительный заряд), анионы хлора (отрицательный заряд), анионы органических соединений (отрицательный заряд). Во внеклеточной жидкости высока концентрация ионов натрия и хлора, во внутриклеточной жидкости – ионов калия и органических соединений. В состоянии относительного физиологического покоя клеточная мембрана хорошо проницаема для катионов калия, чуть хуже для анионов хлора, практически непроницаема для катионов натрия и совершенно непроницаема для анионов органических соединений.

В покое ионы калия без затрат энергии выходят в область меньшей концентрации (на наружную поверхность клеточной мембраны), неся с собой положительный заряд. Ионы хлора проникают внутрь клетки, неся отрицательный заряд. Ионы натрия продолжают оставаться на наружной поверхности мембраны, еще больше усиливая положительный заряд.

Электрические процессы в клетках обусловлены неравномерным распределением ионов по обе стороны клеточной мембраны.

Происхождение мозга Савельев Сергей Вячеславович

§ 8. Заряды мембраны нервных клеток

Однако основные свойства нервной системы обусловлены способностью быстро реагировать на изменение ситуации внутри или вне организма. Скоростные процессы не могут осуществляться по медленным гуморальным законам, они происходят по законам электрохимическим. Нервные клетки способны получать, хранить, перерабатывать и передавать информацию при помощи специальной электрической активности. Они обладают зарядом мембраны - потенциалом покоя и могут его изменять в потенциал действия, который с высокой скоростью распространяется по телу клетки.

В основе потенциала покоя нервных клеток лежит баланс электрохимических и осмотических сил, которые действуют на клеточной границе - мембране. Мембрана клетки полупроницаема. Это означает, что через неё могут проникать далеко не все вещества. Мембрана всегда проницаема для воды, избирательно проницаема для определённых ионов и непроницаема для большинства органических соединений. Молекулы ДНК, РНК, белков и аминокислот находятся внутри клетки и не могут свободно диффундировать через мембрану. В соответствии с законами осмоса вода должна проникать в клетку. Поскольку мембрана клетки непроницаема для органических молекул, осмотическое равновесие достигнуто быть не может. Клетка должна была бы лопнуть. Этого не происходит, поскольку осмотическим силам оказывается постоянное противодействие со стороны сил совершенно другой природы.

Эти силы не осмотические, а электрохимические. Работа осмотических сил уравновешивается работой электрохимических. С одной стороны, это не позволяет клетке лопнуть, а с другой - является источником постоянного заряда мембраны нервной клетки. Внутри клетки находятся молекулы ДНК, РНК, белков, аминокислот и углеводов, которые имеют постоянный заряд. Как правило, этот заряд отрицателен и органические молекулы представляют собой набор внутриклеточных анионов (А). Их заряд уравновешивается внутри клетки положительно заряженными ионами калия (К +). Снаружи клетки основным анионом является хлор (Cl -), а катионом - натрий (Na +). В абстрактной идеальной ситуации концентрации ионов должны были бы выровняться в результате диффузии через мембрану. Однако внутриклеточные анионы неподвижны, а специальные каналы для всех подвижных ионов обычно закрыты. Более того, специализированные ионные каналы постоянно откачивают избыток натрия и хлора из клетки и закачивают внутрь внеклеточный калий. Это процесс осуществляется с затратой энергии. Она тратится на то, чтобы создать такую величину заряда мембраны, чтобы её хватило для противодействия осмотическим силам, стремящимся разрушить клетку.

В реальной клетке основные проблемы с осмотическими (гидростатическими) силами обусловлены различиями в концентрации ионов калия и натрия по обе стороны мембраны. Некоторую роль в этом

процессе играют ионы натрия и подвижность воды, свободно движущейся через мембрану клетки. Тем не менее основное значение имеет калий, поскольку его концентрационные различия максимальны. Внутри клетки калия примерно в 40 раз больше, а натрия в 9 раз меньше, чем в межклеточном пространстве, поэтому калий стремится уравновесить ситуацию, двигаясь по концентрационному градиенту из клетки, а натрий - в клетку. Поскольку концентрации этих ионов внутри и снаружи клетки известны, можно выразить эти процессы в реальных физических величинах. Работа, которую надо выполнить для предотвращения движения ионов калия из клетки по концентрационному градиенту (А 0), будет равна:

где R - газовая постоянная; Т - абсолютная температура; [К + ] - молярная концентрация калия внутри (in) и снаружи клетки (out).

Противодействовать осмотическим силам, стремящимся вывести калий из клетки, могут только электрические силы. Равновесие может быть достигнуто только при равенстве работы осмотических и электрических сил (Аэ):

Для каждого иона может быть вычислена работа, необходимая для преодоления равновесия электрических сил, возникающих вследствие разделения зарядов по обе стороны мембраны:

A 3 = FE,

где F - количество электрических зарядов в моле вещества (постоянная Фарадея); E - выраженная в вольтах разность электрических потенциалов, возникающая в результате разделения зарядов по обе стороны мембраны клетки.

Объединив формулы, легко получить известное уравнение Нернста, или равновесный (диффузионный) потенциал:

Подставив в формулу равновесия сил реальные значения при комнатной температуре, мы получим реальный заряд мембраны, который называют мембранным потенциалом. Обычно он колеблется в различных клетках от -60 до -90 мВ. При прямых измерениях зарядов мембран нервных клеток получены идентичные результаты. Обычная нервная клетка позвоночного обладает постоянным потенциалом мембраны около -75 мВ. Надо отметить, что подвижны ионы калия, натрия и хлора, поэтому при точных вычислениях мембранных потенциалов надо учитывать другие ионы.

Заряд мембраны и её способность изменять проницаемость для ионов под влиянием различных причин - уникальное эволюционное достижение. Этим свойством обладают многие клетки. Однако нервные клетки используют его для восприятия, передачи и хранения информации. Если при местном воздействии на нервную клетку возникает локальный участок с изменённым зарядом, то сигнал распространяется по мембране нервной клетки. Его обычно называют пассивным, а сам потенциал - градуальным. Это означает, что возникшее локальное возбуждение распространяется по мембране электротонически, что приводит к его постепенному затуханию. Обычно такие сигналы распространяются на небольшие расстояния, хотя у членистоногих известны нейроны, передающие такие сигналы на десятки миллиметров. Градуальные потенциалы образуют светочувствительные клетки сетчатки насекомых и позвоночных, многих периферических рецепторов и даже мотонейронов мышц стенки тела круглых червей.

Потенциал покоя есть у всех клеток на этой планете. Однако в нервной системе он является только отправной точкой для получения, хранения, обработки и передачи сигналов. Информация передаётся в нервных клетках при помощи динамического изменения заряда мембраны клетки. Это изменение может быть быстрым или медленным. Если оно происходит быстро и изменение заряда мембраны клетки превышает определённый порог, то возникает потенциал действия. Нейроны, формирующие потенциал действия, называют спайковыми. Потенциал действия отличается от градуального потенциала тем, что не затухает по мере движения от места возникновения. Причиной этого является способность мембраны активно распространять местную перезарядку мембраны, если изменение её потенциала достигнет определённого уровня. В обычной ситуации мембрана нервной клетки с потенциалом покоя -75 мВ должна изменить свой заряд до +40 мВ. Такое изменение приводит к формированию незатухающего потенциала действия, который распространяется по мембране клетки. Величину заряда мембраны, с которой начинается распространение сигнала, называют пороговой. Поскольку отростки нервных клеток достаточно хорошо изолированы глиальными клетками, а потенциал распространяется по мембране, его распространение скачкообразное (сальтаторное). В местах, где глиальные клетки плотно прилежат к нейронным мембранам, проведение происходит скачком: от одного перехвата Ранвье до другого. В перехватах мембрана отростков открыта, что позволяет осуществлять распространение сигнала путём открывания и закрывания калиевых и натриевых ионных каналов.

Принцип передачи сигнала по мембране нервной клетки довольно прост. В его основе лежит высокая плотность ионных каналов в мембране нервных клеток. Количество натриевых каналов может достигать в перехватах Ранвье 12 000 на 1 мкм 2 . Большое количество ионных каналов в мембранах нервных клеток является основой для распространения потенциалов действия. Натриевые и калиевые каналы расположены довольно плотно, что позволяет формировать локальные встречные потоки ионов при движении сигнала. Потенциал действия образуется в нейроне у аксонного холмика и начинается с открытия натриевых ионных каналов и проникновения натрия внутрь клетки. Поскольку в покое мембрана нейрона имеет заряд внутренней поверхности около -70 мВ, начинается небольшой сдвиг потенциала. Заряд мембраны локально уменьшается и постепенно доходит до нуля, а затем и до +40 мВ.

Изменение знака заряда мембраны приводит к закрыванию натриевых каналов и открыванию калиевых. Поток ионов калия восстанавливает исходный отрицательный заряд. Этот процесс называют кратковременной реверсией потенциала, или потенциалом действия. Возникнув в аксонном холмике, он распространяется по мембране клетки. Волна изменения заряда мембраны двигается с высокой скоростью, а весь процесс реверсии и восстановления занимает миллисекунды. Однако скорости движения потенциалов действия существенно различаются. На это влияют степень миелинизации, диаметр нервных волокон и многие другие факторы.

Скорости проведения потенциалов действия в нервной системе у разных видов животных различаются в десятки раз. Самые высокие скорости известны у аксонов человека и креветок (120–200 м/с), а самые низкие у актиний и медуз (0,1–0,5 м/с). По сути дела процессы передачи сигналов происходят в нервной системе со скоростью, которая отражает динамику и продолжительность жизни организма. Скорость нервных процессов определяет активность животного и внутреннее восприятие времени.

Надо отметить, что передаваемая информация кодируется частотой, последовательностью и продолжительностью активности импульсов, что обеспечивает высокую точность переносимой информации. Эти информационные сигналы различаются не только по принципам кодировки, но и по источникам - типам нервных клеток. Существует морфологическая и физиологическая классификация нейронов. По ведущим функциям нейроны физиологически подразделяются на сенсорные (афферентные), моторные, или двигательные (эфферентные), вставочные (ассоциативные, соединяющие афферентные и эфферентные) и нейросекреторные (гормональные клетки нервной системы). Эти типы не абсолютно жёсткие, а каждая клетка отчасти обладает всеми перечисленными функциями.

Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

2. Строение клеточной стенки и цитоплазматической мембраны Клеточная стенка – упругое ригидное образование толщиной 150–200 ангстрем. Выполняет следующие функции:1) защитную, осуществление фагоцитоза;2) регуляцию осмотического давления;3) рецепторную;4) принимает

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Основы психофизиологии автора Александров Юрий

Из книги Проблемы лечебного голодания. Клинико-экспериментальные исследования [все четыре части!] автора Анохин Петр Кузьмич

1. РЕГИСТРАЦИЯ ИМПУЛЬСНОЙ АКТИВНОСТИ НЕРВНЫХ КЛЕТОК Изучение активности нервных клеток, или нейронов, как целостных морфологических и функциональных единиц нервной системы, безусловно, остаётся базовым направлением в психофизиологии. Одним из показателей активности

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Особенности подвижности основных нервных процессов у больных с различными психическими заболеваниями в процессе лечения их дозированным голоданием Ю. С. НИКОЛАЕВ, В. А. БРЮЗГИН, В. Б, ГУРВИЧ (Москва) В ряде предыдущих сообщений было высказано мнение, что при лечении

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

§ 9. Синаптические контакты нервных клеток Каждый нейрон способен воспринимать и передавать информацию. Он осуществляет это в специальных участках мембраны (см. рис. I-12). От тела нейрона обычно отходят одиночные аксоны, по которым нейрон передаёт потенциалы действия или

Из книги Гены и развитие организма автора Нейфах Александр Александрович

§ 10. Типы объединения нервных клеток Нервные клетки объединены в нервные системы различным образом. В простейшем случае эти элементы распределены вполне равномерно по всему телу животного или по большей его части (Anderson, 1990). Равномерное распределение нервных клеток

Из книги Мозг в электромагнитных полях автора Холодов Юрий Андреевич

Глава II. Возникновение нервных клеток и мозга Причиной возникновения нервной системы стала низкая скорость получения информации о внешнем и внутреннем мире организма с донервной организацией. Его ткани состояли из клеток со сходной химической, электромагнитной и

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Из книги автора

2. Пол половых клеток После того как гоноциты попали в половые железы, их судьба зависит от того, какие половые клетки они должны образовать - мужские, т. е. сперматозоиды, или женские, т. е. яйца. В первом случае их путь развития называют сперматогенезом, а во втором -

Из книги автора

1. Форма клеток Форма клеток зависит от их внутренней структуры и свойств клеточной оболочки и от их окружения - соседних клеток и поверхностей контакта. Так, при культивировании отдельных клеток на поверхности стекла все клетки стремятся распластаться по субстрату.

Из книги автора

Глава 9. Мембраны и биохимия Электронный микроскоп показал, что биохимические реакции в живой клетке протекают с активным участием мембранных процессов. Это заключение относится и к нервной, и к глиальной клетке, и к внутриклеточным органеллам.Следует признать, что

Из книги автора

7.8. Сигналы нервных клеток Нервная система возникает в ходе эволюции для анализа организмами поступающей информации. С этой целью нервные клетки используют электрические и химические сигналы. Электрические сигналы бывают двух видов.Градуальный потенциал возникает в

Из книги автора

Глава 9. Биологические мембраны Клетка представляет биологическую систему, основу которой составляют мембранные структуры, отделяющие клетку от внешней среды, формирующие ее отсеки (компартменты), а также обеспечивающие поступление и удаление метаболитов, восприятие и

Из книги автора

Роль медиаторов в передаче нервных импульсов Большинство синапсов в нервной системе млекопитающих является химическими. Процесс передачи сигнала в химическом синапсе осуществляется посредством освобождения нейромедиаторов из пресинаптических нервных окончаний. К

1. Барьерная (защищает клетку, поддерживает ее форму)

2. Транспортная (определяет состав веществ внутри клетки)

3. Рецепторная (определяет специальную чувствительность данной клетки к определенной группе химических веществ)

4. Электрическая (обеспечивает создание разности потенциалов между внутренней и внешней поверхностью мембраны).

Отличительные свойства нервной клетки:

Возбудимость (способность генерировать потенциал действия при раздражении)

Проводимость (способность проводить и передавать возбуждение другим клеткам).

Электрические процессы в нейронах

Природа мембранного потенциала (потенциала покоя)

Потенциал покоя формируется благодаря пассивному (по градиентам) выходу ионов калия из клетки. В результате: -на наружной поверхности мембраны возникает избыток положительно заряженных ионов; внутри клетки остаются отрицательно заряженные крупные молекулы.

Механизм возбуждения нейрона:

1. Начальное изменение потенциала мембраны;

2. раскрывается часть натриевых каналов;

3. повышается проницаемость мембраны для натрия;

4. перемещение натрия в клетку по электрическому и химическому градиентам.

5. Рост числа положительны ионов внутри клетки;

6. Локальная деполяризация мембраны. (если деполяризация незначительна, то все сначала)

Если деполяризация достигает критической величины:

7. Раскрываются все натриевые каналы;

8. Происходит резкая деполяризация мембраны - потенциал действия (от -90 мВ до +30 мВ)

9. Натриевые каналы захлопываются и раскрываются калиевые каналы (через 0,5 мс).

10. Прекращается диффузия натрия, и начинается выход калия, который вытягивает электрический градиент.

11. Восстановление мембранного потенциала до исходных значений – реполяризация.

12. Прекращение выхода калия из клетки за счет изменения электрического градиента.

13. Включается натрий-калиевый насос.

14. Восстановление исходного ионного баланса (калий – внутри клетки, натрий – снаружи).

Ионный насос – мембранная транспортная система, обеспечивающая перенос ионов против электрохимического градиента, то есть с затратой энергии.

[рис. Потенциал действия]

Закон «все или ничего»

Если деполяризация мембраны достигает критической (пороговой) величины, то формируется потенциал действия. Если деполяризаця мембраны не достигает пороговой величины, то потенциал действия не формируется.

Преимущества сальтаторного проведения:

Экономичность (площадь перехвата менее 1% мембраны аксона)

Скорость (поле распространяется на большее расстояние).

Структурные элементы синапса:

1. Пресинаптическая мембрана (мембрана аксона, передающего нейрона)

2. Синаптическая щель (межклеточная жидкость)

3. Постсинаптическая мембрана (мембрана дендрита или сомы принимающего нейрона)

Механизм синаптической передачи.

1. Приход потенциала действия в синаптическое окончание аксона;

2. Раскрытие кальциевых каналов;

3. Повышение проницаемости мембраны для кальция;

4. Перемещение ионов кальция в клетку;

5. Деполяризация пресинаптической мембраны;

6. Выброс медиаторов в синаптическую щель (чем больше деполяризация – тем больше выброс).

7. Соединение медиатора со специфическими рецепторами постсинаптической мембраны;

8. Изменение потенциала постсинаптической мембраны;

9. Раскрытие ионных каналов;

10. Если увеличение проницаемости ионов натрия приводит к формированию ВПСП (возбудительный постинаптический потенциал), если калия и хлора – ТПСП.

Проведение в синапсах: одностороннее, с задержкой.

Свойства постсинаптических потенциалов:

Градуальность (амплитуда потенциалов переменная и отражает частоту потенциалов действия, поступающих на синапс)

Локальность (ВПСП и ТПСП распространяются по нейрону с затуханием).

Способность к суммации (суммируются потенциалы, близкорасположенные в пространстве и времени).

Функции нейроглии:

Защитная

Изолирующая

Обменная.

Функции глиальных клеток:

1. Астроциты: формируют каркас для нейронов; обеспечивают метаболизм; регенерация нерва.

2. Олигодендроциты: миелиновые оболочки аксонов.

Функционирование спинного мозга

Спинной мозг – это главный исполнительный отдел ЦНС. В его задачи входит передача команд на мышцы и железы, а также регуляция работы внутренних органов.

Корешки спинного мозга делятся на задние и передние.

Задние – чувствительные– афферентные. Состоят из аксонов клеток спинальных ганглиев. По ним предается информация от кожных рецепторов, проприорецепторов, висцерорецепторов.

Передние – двигательные – эфферентные. Состоят из аксоны мотонейронов. Направляются к мышцам к железам.

Каждый сегмент спинного мозга иннервирует три метамера тела.

Задние рога спинного мозга состоят из чувствительных (афферентых) нейронов, интернейронов (вставочных нейронв), а также клеток желатинозной субстанции (тормозные нейроны).

Передние рога состоят из мотонейронов.

Функциональные отделы серого вещества спинного мозга [рисунок]

По восходящим путям спинного мозга передаются:

- сигналы от рецепторов мышц и сухожилий (проприорецепторы) по пучкам Голяя и Бурдаха, по спиномозжечковым путям Говерса и Флексига.

Сигналы от болевых и тепературных рецепторов по латеральному спиноталамическому тракту.

Сигналы от тактильных рецепторов по вентральному спиноталамическому пути и частичто по пучкам Голля и Бурдаха.

Нисходящие пути спинного мозга. Включают в себя две системы: пирамидную и экстарпирамидную систему.

По пирамидной системе передается команды на выполнение целенаправленных движений, по кортикоспинальным путям.

По экстарпирамидной системе передаются команды поддержания позы и равновесия по ретикулоспинальным, руброспинальным, тектоспинальным, вестибулоспинальным и оливоспинальным путям.

Спинной мозг реализует две основных функции: рефлекторная и проводниковая.

Рефлекторная функция спинного мозга

Рефлекс – это стереотипная реакция организма на раздражение рецепторов, осуществляемая при участии нервной системы.

Дуга спинального соматического рефлекса [рисунок]

Фунзкциональной единицей спинного мозга является цепь, объединяющая чувствительный нейрон с мотонейроном.

Рефлекторная дейятельность спинного мозга обеспечиваеется :

1. передачей возбуждения с чувствительных нейронов на моторные нейроны.

2. Регуляцией передачи возбуждения в рефлекторной дуге.

Регуляция рефлексов осуществляется через организованное торможения.

1. Внутрисементарное торможение – скоординированная работа флексоров и экстензоров (сгибатели и разгибатели).

2. Межсегментарное тороможение – скоординировання работа мыщечных групп.

3. Эфферентное (центральное) торможение внутриспинальных тормозных связей – сила и скорость рефлекторной реакции.

Реализация рефлекторной функции:

1. обработка афферентных сигналов

2. обработка команд от управляющих структур

3. Формирование моторных команд

4. Формирование обратной афферентации

Рефлексы спинного мозга:

1. Мышечные (движения, поза).

2. Кожные (сосудистые, потоотделительные…)

3. Висцеральные (мышцы груди, спины…)

Спинальные рефлексы:

1. Простые (реализуются одним сегментом)

2. Сложные (реализуются несколькими сегментами)

Спинной мозг – это центр элементарных двигательных программ; центр врожденных двигательных автоматизмов;

Проводниковая функция спинного мозга

Заключается в передаче восходящих и нисходящих потоков информации. Восходящая информация – о положении конечностей, туловища, головы. Нисходящая информация содержит в себе команды на движения, поддержание позы и равновесия, регулирующие влияния (на рефлекторные дуги).

Вегетативная нервная система спинного мозга

Вегетативная нервная система – это та часть нервной системы, которая иннервирует внутренние органы, сосуды, железы и мышцы.

Состоит из двух отделов:

Симпатической системы (локализована в спинном мозге - в боговых рогах)

Парасимпатической системы (локализована в стволе головного мозга и в крестцовом отделе спинного мозга – в боковых рогах)

Центры симпатической НС

1. Грудной отдел спинного мозга (боковые рога)

2. Поясничные отдел спинного мозга (боковые рога)

Центры парасимпатической НС, находящиеся в спинном мозге, находятся в крестцовом отделе спинного мозга (боковые рога).