X 1 какой график. Основные свойства функции. Сбор и использование персональной информации

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости - первые две формулы, для трехмерной системы координат - все три формулы) вычисляются по формулам:

Функция – это соответствие вида y = f (x ) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у . При этом одно и то же значение у может быть получено при различных х .

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х ), при которых функция определена, т.е. ее значение существует. Обозначается область определения D (y ). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е (у ).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f (x ) называют четной х

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f (x ) называют нечетной , если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны. График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный кореньх .

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида , и для них не выполняется ни одно из равенств или свойств приведенных выше.

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону - слева направо):

График квадратичной функции (Парабола)

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x 1 ; 0) и (x 2 ; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x 0 ; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c ). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax 2 + bx + c , то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p - на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q - на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

Графики других функций

Степенной функцией

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота - это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x | выглядит следующим образом:

Графики периодических (тригонометрических) функций

Функция у = f (x ) называется периодической , если существует такое, неравное нулю, число Т , что f (x + Т ) = f (x ), для любого х из области определения функции f (x ). Если функция f (x ) является периодической с периодом T , то функция:

где: A , k , b – постоянные числа, причем k не равно нулю, также периодическая с периодом T 1 , который определяется формулой:

Большинство примеров периодических функций - это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой :

График функции y = cosx называется косинусоидой . Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой . Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов позволит Вам показать на ЦТ отличный результат, максимальный из того на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на почту. Написать об ошибке можно также в социальной сети (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Элементарные функции и их графики

    Прямая пропорциональность. Линейная функция .

    Обратная пропорциональность. Гипербола.

    Квадратичная функция . Квадратная парабола.

    Степенная функция. Показательная функция.

    Логарифмическая функция . Тригонометрические функции.

    Обратные тригонометрические функции.

    1.

    Пропорциональные величины. Если переменные y и x прямо пропорциональны , то функциональная зависимость между ними выражается уравнением:

    y = k x ,

    где k - постоянная величина ( коэффициент пропорциональности ).

    График прямой пропорциональности – прямая линия, проходящая через начало координат и образующая с осью X угол , тангенс которого равен k : tan = k (рис.8). Поэтому, коэффициент пропорциональности называется также угловым коэффициентом . На рис.8 показаны три графика для k = 1/3, k = 1 и k = 3 .

    2.

    Линейная функция. Если переменные y и x связаны уравнением 1-ой степени:

    A x + B y = C ,

    где по крайней мере одно из чисел A или B не равно нулю, то графиком этой функциональной зависимости является прямая линия . Если C = 0, то она проходит через начало координат, в противном случае - нет. Графики линейных функций для различных комбинаций A , B , C показаны на рис.9.

    3.

    Обратная пропорциональность. Если переменные y и x обратно пропорциональны , то функциональная зависимость между ними выражается уравнением:

    y = k / x ,

    где k - постоянная величина.

    График обратной пропорциональности – гипербола (рис.10). У этой кривой две ветви. Гиперболы получаются при пересечении кругового конуса плоскостью (о конических сечениях см. раздел «Конус» в главе «Стереометрия»). Как показано на рис.10, произведение координат точек гиперболы есть величина постоянная, в нашем примере равная 1. В общем случае эта величина равна k , что следует из уравнения гиперболы: xy = k .

    Основные характеристики и свойства гиперболы:

    Область определения функции: x 0, область значений: y 0 ;

    Функция монотонная (убывающая) при x < 0 и при x > 0, но не

    монотонная в целом из-за точки разрыва x = 0 (подумайте, почему?);

    Функция неограниченная, разрывная в точке x = 0, нечётная, непериодическая;

    - нулей функция не имеет.

    4.

    Квадратичная функция. Это функция: y = ax 2 + bx + c , где a, b, c - постоянные, a 0. В простейшем случае имеем: b = c = 0 и y = ax 2 . График этой функции квадратная парабола - кривая, проходящая через начало координат (рис.11). Каждая парабола имеет ось симметрии OY , которая называется осью параболы . Точка O пересечения параболы с её осью называется вершиной параболы .

    График функции y = ax 2 + bx + c - тоже квадратная парабола того же вида, что и y = ax 2 , но её вершина лежит не в начале координат, а в точке с координатами:

    Форма и расположение квадратной параболы в системе координат полностью зависит от двух параметров: коэффициента a при x 2 и дискриминанта D : D = b 2 4ac . Эти свойства следуют из анализа корней квадратного уравнения (см. соответствующий раздел в главе «Алгебра»). Все возможные различные случаи для квадратной параболы показаны на рис.12.

    Изобразите, пожалуйста, квадратную параболу для случая a > 0, D > 0 .

    Основные характеристики и свойства квадратной параболы:

    Область определения функции:  < x + (т.e. x R ), а область

    значений:(ответьте, пожалуйста, на этот вопрос сами!);

    Функция в целом не монотонна, но справа или слева от вершины

    ведёт себя, как монотонная;

    Функция неограниченная, всюду непрерывная, чётная при b = c = 0,

    и непериодическая;

    - при D < 0 не имеет нулей. (А что при D 0 ?) .

    5.

    Степенная функция. Это функция: y = ax n , где a , n – постоянные. При n = 1 получаем прямую пропорциональность : y = ax ; при n = 2 - квадратную параболу ; при n = 1 - обратную пропорциональность или гиперболу . Таким образом, эти функции - частные случаи степенной функции. Мы знаем, что нулевая степень любого числа, отличного от нуля, равна 1, cледовательно, при n = 0 степенная функция превращается в постоянную величину: y = a , т.e. её график - прямая линия, параллельная оси Х , исключая начало координат (поясните, пожалуйста, почему?). Все эти случаи (при a = 1) показаны на рис.13 (n 0) и рис.14 (n < 0). Отрицательные значения x здесь не рассматриваются, так как тогда некоторые функции:

    Если n – целые, степенные функции имеют смысл и при x < 0, но их графики имеют различный вид в зависимости от того, является ли n чётным числом или нечётным. На рис.15 показаны две такие степенные функции: для n = 2 и n = 3.

    При n = 2 функция чётная и её график симметричен относительно оси Y . При n = 3 функция нечётная и её график симметричен относительно начала координат. Функция y = x 3 называется кубической параболой .

    На рис.16 представлена функция . Эта функция является обратной к квадратной параболе y = x 2 , её график получается поворотом графика квадратной параболы вокруг биссектрисы 1-го координатного углаЭто способ получения графика любой обратной функции из графика её исходной функции. Мы видим по графику, что это двузначная функция (об этом говорит и знак  перед квадратным корнем). Такие функции не изучаются в элементарной математике, поэтому в качестве функции мы рассматриваем обычно одну из её ветвей: верхнюю или нижнюю.

    6.

    Показательная функция. Функция y = a x , где a - положительное постоянное число, называется показательной функцией . Аргумент x принимает любые действительные значения ; в качестве значений функции рассматриваются только положительные числа , так как иначе мы имеем многозначную функцию. Так, функция y = 81 x имеет при x = 1/4 четыре различных значения: y = 3, y = 3, y = 3 i и y = 3 i (проверьте, пожалуйста!). Но мы рассматриваем в качестве значения функции только y = 3. Графики показательной функции для a = 2 и a = 1/2 представлены на рис.17. Они проходят через точку (0, 1). При a = 1 мы имеем график прямой линии, параллельной оси Х , т.e. функция превращается в постоянную величину, равную 1. При a > 1 показательная функция возрастает, a при 0 < a < 1 – убывает.

    Основные характеристики и свойства показательной функции:

     < x + (т.e. x R );

    область значений: y > 0 ;

    Функция монотонна: возрастает при a > 1 и убывает при 0 < a < 1;

    - нулей функция не имеет.

    7.

    Логарифмическая функция. Функция y = log a x , где a – постоянное положительное число, не равное 1, называется логарифмической . Эта функция является обратной к показательной функции; её график (рис.18) может быть получен поворотом графика показательной функции вокруг биссектрисы 1-го координатного угла.

    Основные характеристики и свойства логарифмической функции:

    Область определения функции: x > 0, а область значений:  < y +

    (т.e. y R );

    Это монотонная функция: она возрастает при a > 1 и убывает при 0 < a < 1;

    Функция неограниченная, всюду непрерывная, непериодическая;

    У функции есть один ноль: x = 1.

    8.

    Тригонометрические функции. При построении тригонометрических функций мы используем радианную меру измерения углов. Тогда функция y = sin x представляется графиком (рис.19). Эта кривая называется синусоидой .

    График функции y = cos x представлен на рис.20; это также синусоида, полученная в результате перемещения графика y = sin x вдоль оси Х влево на 2

    Из этих графиков очевидны характеристики и свойства этих функций:

    Область определения:  < x +  область значений: 1 y +1;

    Эти функции периодические: их период 2;

    Функции ограниченные (| y | , всюду непрерывные, не монотонные, но

    имеющие так называемые интервалы монотонности , внутри которых они

    ведут себя, как монотонные функции (см. графики рис.19 и рис.20);

    Функции имеют бесчисленное множество нулей (подробнее см. раздел

    «Тригонометрические уравнения»).

    Графики функций y = tan x и y = cot x показаны соответственно на рис.21 и рис.22

    Из графиков видно, что эти функции: периодические (их период ,

    неограниченные, в целом не монотонные, но имеют интервалы монотонности

    (какие?), разрывные (какие точки разрыва имеют эти функции?). Область

    определения и область значений этих функций:

    9.

    Обратные тригонометрические функции. Определения обратных

    тригонометрических функций и их основные свойства приведены в

    одноимённом разделе в главе «Тригонометрия». Поэтому здесь мы ограничимся

    лишь короткими комметариями, касающимися их графиков, полученных

    поворотом графиков тригонометрических функций вокруг биссектрисы 1-го

    координатного угла.

    Функции y = Arcsin x (рис.23) и y = Arccos x (рис.24) многозначные, неограниченные; их область определения и область значений соответственно: 1 x +1 и  < y + . Поскольку эти функции многозначные, не

    Система координат – это две взаимно перпендикулярные координатные прямые, пересекающиеся в точке, которая является началом отсчета для каждой из них.

    Координатные оси – прямые, образующие систему координат.

    Ось абсцисс (ось x) — горизонтальная ось.

    Ось ординат (ось y) — вертикальная ось.

    Функция

    Функция — это отображение элементов множества X на множество Y . При этом каждому элементу x множества X соответствует одно единственное значение y множества Y .

    Прямая

    Линейная функция – функция вида y = a x + b где a и b — любые числа.

    Графиком линейной функции является прямая линия.

    Рассмотрим, как будет выглядеть график в зависимости от коэффициентов a и b:

    Если a > 0 , прямая будет проходить через I и III координатные четверти.

    Если a < 0 , прямая будет проходить через II и IV координатные четверти.

    b — точка пересечения прямой с осью y .

    Если a = 0 , фукция принимает вид y = b .

    Отдельно выделим график уравнения x = a .

    Важно : это уравнение не является функцией так как нарушается определение функции (функция ставит в соответствие каждому элементу x множества X одно единственно значение y множества Y). Данное уравнение ставит в соответствие одному элементу x бесконечное множества элементов y . Тем не менее, график данного уравнения построить можно. Просто не будем называть его гордым словом «Функция».

    Парабола

    Графиком функции y = a x 2 + b x + c является парабола .

    Для того, чтобы однозначно определить, как располагается график параболы на плоскости, нужно знать, на что влияют коэффициенты a , b , c:

    1. Коэффициент a указывает на то, куда направлены ветки параболы.
    • Если a > 0 , ветки параболы направлены вверх.
    • Если a < 0 , ветки параболы направлены вниз.
    1. Коэффициент c указывает, в какой точке парабола пересекает ось y .
    2. Коэффициент b помогает найти x в — координату вершины параболы.

    x в = − b 2 a

    1. Дискриминант позволяет определить, сколько точек пересечения у параболы с осью.
    • Если D > 0 — две точки пересечения.
    • Если D = 0 — одна точка пересечения.
    • Если D < 0 — нет точек пересечения.

    Графиком функции y = k x является гипербола .

    Характерная особенность гиперболы в том, что у неё есть асимптоты.

    Асимптоты гиперболы – прямые, к которым она стремится, уходя в бесконечность.

    Ось x – горизонтальная асимптота гиперболы

    Ось y – вертикальная асимптота гиперболы.

    На графике асимптоты отмечены зелёной пунктирной линией.

    Если коэффициент k > 0 , то ветви гиперолы проходят через I и III четверти.

    Если k     <     0, ветви гиперболы проходят через II и IV четверти.

    Чем меньше абсолютная величина коэффиента k (коэффициент k без учета знака), тем ближе ветви гиперболы к осям x и y .

    Квадратный корень

    Функция y     =     x имеет следующий график:

    Возрастающие/убывающие функции

    Функция y   =   f (x) возрастает на интервале , если большему значению аргумента (большему значению x) соответствует большее значение функции (большее значение y) .

    То есть чем больше (правее) икс, тем больше (выше) игрек. График поднимается вверх (смотрим слева направо)

    Функция y   =   f (x) убывает на интервале , если большему значению аргумента (большему значению x) соответствует меньшее значение функции (большее значение y) .

    Данный методический материал носит справочный характер и относится к широкому кругу тем. В статье приведен обзор графиков основных элементарных функций и рассмотрен важнейший вопрос – как правильно и БЫСТРО построить график . В ходе изучения высшей математики без знания графиков основных элементарных функций придётся тяжело, поэтому очень важно вспомнить, как выглядят графики параболы, гиперболы, синуса, косинуса и т.д., запомнить некоторые значения функций. Также речь пойдет о некоторых свойствах основных функций .

    Я не претендую на полноту и научную основательность материалов, упор будет сделан, прежде всего, на практике – тех вещах, с которыми приходится сталкиваться буквально на каждом шагу, в любой теме высшей математики . Графики для чайников? Можно сказать и так.

    По многочисленным просьбам читателей кликабельное оглавление :

    Кроме того, есть сверхкраткий конспект по теме
    – освойте 16 видов графиков, изучив ШЕСТЬ страниц!

    Серьёзно, шесть, удивился даже я сам. Данный конспект содержит улучшенную графику и доступен за символическую плaту , демо-версию можно посмотреть . Файл удобно распечатать, чтобы графики всегда были под рукой. Спасибо за поддержку проекта!

    И сразу начинаем:

    Как правильно построить координатные оси?

    На практике контрольные работы почти всегда оформляются студентами в отдельных тетрадях, разлинованных в клетку. Зачем нужна клетчатая разметка? Ведь работу, в принципе, можно сделать и на листах А4. А клетка необходима как раз для качественного и точного оформления чертежей.

    Любой чертеж графика функции начинается с координатных осей .

    Чертежи бывают двухмерными и трехмерными.

    Сначала рассмотрим двухмерный случай декартовой прямоугольной системы координат :

    1) Чертим координатные оси. Ось называется осью абсцисс , а ось – осью ординат . Чертить их всегда стараемся аккуратно и не криво . Стрелочки тоже не должны напоминать бороду Папы Карло.

    2) Подписываем оси большими буквами «икс» и «игрек». Не забываем подписывать оси .

    3) Задаем масштаб по осям: рисуем ноль и две единички . При выполнении чертежа самый удобный и часто встречающийся масштаб: 1 единица = 2 клеточки (чертеж слева) – по возможности придерживайтесь именно его. Однако время от времени случается так, что чертеж не вмещается на тетрадный лист – тогда масштаб уменьшаем: 1 единица = 1 клеточка (чертеж справа). Редко, но бывает, что масштаб чертежа приходится уменьшать (или увеличивать) еще больше

    НЕ НУЖНО «строчить из пулемёта» …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …. Ибо координатная плоскость – не памятник Декарту, а студент – не голубь. Ставим ноль и две единицы по осям . Иногда вместо единиц удобно «засечь» другие значения, например, «двойку» на оси абсцисс и «тройку» на оси ординат – и эта система (0, 2 и 3) тоже однозначно задаст координатную сетку.

    Предполагаемые размеры чертежа лучше оценить еще ДО построения чертежа . Так, например, если в задании требуется начертить треугольник с вершинами , , , то совершенно понятно, что популярный масштаб 1 единица = 2 клеточки не подойдет. Почему? Посмотрим на точку – здесь придется отмерять пятнадцать сантиметров вниз, и, очевидно, что чертеж не вместится (или вместится еле-еле) на тетрадный лист. Поэтому сразу выбираем более мелкий масштаб 1 единица = 1 клеточка.

    Кстати, о сантиметрах и тетрадных клетках. Правда ли, что в 30 тетрадных клетках содержится 15 сантиметров? Отмерьте в тетради для интереса 15 сантиметров линейкой. В СССР, возможно, это было правдой… Интересно отметить, что если отмерить эти самые сантиметры по горизонтали и вертикали, то результаты (в клетках) будут разными! Строго говоря, современные тетради не клетчатые, а прямоугольные. Возможно, это покажется ерундой, но, чертить, например, окружность циркулем при таких раскладах очень неудобно. Если честно, в такие моменты начинаешь задумываться о правоте товарища Сталина, который отправлял в лагеря за халтуру на производстве, не говоря уже об отечественном автомобилестроении, падающих самолетах или взрывающихся электростанциях.

    К слову о качестве, или краткая рекомендация по канцтоварам. На сегодняшний день большинство тетрадей в продаже, плохих слов не говоря, полное гомно. По той причине, что они промокают, причём не только от гелевых, но и от шариковых ручек! На бумаге экономят. Для оформления контрольных работ рекомендую использовать тетради Архангельского ЦБК (18 листов, клетка) или «Пятёрочку», правда, она дороже. Ручку желательно выбрать гелевую, даже самый дешевый китайский гелевый стержень намного лучше, чем шариковая ручка, которая то мажет, то дерёт бумагу. Единственной «конкурентоспособной» шариковой ручкой на моей памяти является «Эрих Краузе». Она пишет чётко, красиво и стабильно – что с полным стержнем, что с практически пустым.

    Дополнительно : вИдение прямоугольной системы координат глазами аналитической геометрии освещается в статье Линейная (не) зависимость векторов. Базис векторов , подробную информацию о координатных четвертях можно найти во втором параграфе урока Линейные неравенства .

    Трехмерный случай

    Здесь почти всё так же.

    1) Чертим координатные оси. Стандарт: ось аппликат – направлена вверх, ось – направлена вправо, ось – влево вниз строго под углом 45 градусов.

    2) Подписываем оси.

    3) Задаем масштаб по осям. Масштаб по оси – в два раза меньше, чем масштаб по другим осям . Также обратите внимание, что на правом чертеже я использовал нестандартную «засечку» по оси (о такой возможности уже упомянуто выше) . С моей точки зрения, так точнее, быстрее и эстетичнее – не нужно под микроскопом выискивать середину клетки и «лепить» единицу впритык к началу координат.

    При выполнении трехмерного чертежа опять же – отдавайте приоритет масштабу
    1 единица = 2 клетки (чертеж слева).

    Для чего нужны все эти правила? Правила существуют для того, чтобы их нарушать. Чем я сейчас и займусь. Дело в том, что последующие чертежи статьи будут выполнены мной в Экселе, и, координатные оси будут выглядеть некорректно с точки зрения правильного оформления. Я бы мог начертить все графики от руки, но чертить их на самом деле жуть как неохота Эксель их начертит гораздо точнее.

    Графики и основные свойства элементарных функций

    Линейная функция задается уравнением . График линейной функций представляет собой прямую . Для того, чтобы построить прямую достаточно знать две точки.

    Пример 1

    Построить график функции . Найдем две точки. В качестве одной из точек выгодно выбрать ноль.

    Если , то

    Берем еще какую-нибудь точку, например, 1.

    Если , то

    При оформлении заданий координаты точек обычно сводятся в таблицу:


    А сами значения рассчитываются устно или на черновике, калькуляторе.

    Две точки найдены, выполним чертеж:


    При оформлении чертежа всегда подписываем графики .

    Не лишним будет вспомнить частные случаи линейной функции:


    Обратите внимание, как я расположил подписи, подписи не должны допускать разночтений при изучении чертежа . В данном случае крайне нежелательно было поставить подпись рядом с точкой пересечения прямых , или справа внизу между графиками.

    1) Линейная функция вида () называется прямой пропорциональностью. Например, . График прямой пропорциональности всегда проходит через начало координат. Таким образом, построение прямой упрощается – достаточно найти всего одну точку.

    2) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции строится сразу, без нахождения всяких точек. То есть, запись следует понимать так: «игрек всегда равен –4, при любом значении икс».

    3) Уравнение вида задает прямую, параллельную оси , в частности, сама ось задается уравнением . График функции также строится сразу. Запись следует понимать так: «икс всегда, при любом значении игрек, равен 1».

    Некоторые спросят, ну зачем вспоминать 6 класс?! Так-то оно, может и так, только за годы практики я встретил добрый десяток студентов, которых ставила в тупик задача построения графика вроде или .

    Построение прямой – самое распространенное действие при выполнении чертежей.

    Прямая линия детально рассматривается в курсе аналитической геометрии, и желающие могут обратиться к статье Уравнение прямой на плоскости .

    График квадратичной, кубической функции, график многочлена

    Парабола. График квадратичной функции () представляет собой параболу. Рассмотрим знаменитый случай:

    Вспоминаем некоторые свойства функции .

    Итак, решение нашего уравнения: – именно в этой точке и находится вершина параболы. Почему это так, можно узнать из теоретической статьи о производной и урока об экстремумах функции . А пока рассчитываем соответствующее значение «игрек»:

    Таким образом, вершина находится в точке

    Теперь находим другие точки, при этом нагло пользуемся симметричностью параболы. Следует заметить, что функция не является чётной , но, тем не менее, симметричность параболы никто не отменял.

    В каком порядке находить остальные точки, думаю, будет понятно из итоговой таблицы:

    Данный алгоритм построения образно можно назвать «челноком» или принципом «туда-сюда» с Анфисой Чеховой.

    Выполним чертеж:


    Из рассмотренных графиков вспоминается еще один полезный признак:

    Для квадратичной функции () справедливо следующее:

    Если , то ветви параболы направлены вверх .

    Если , то ветви параболы направлены вниз .

    Углублённые знания о кривой можно получить на уроке Гипербола и парабола .

    Кубическая парабола задается функцией . Вот знакомый со школы чертеж:


    Перечислим основные свойства функции

    График функции

    Он представляет собой одну из ветвей параболы . Выполним чертеж:


    Основные свойства функции :

    В данном случае ось является вертикальной асимптотой для графика гиперболы при .

    Будет ГРУБОЙ ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой .

    Также односторонние пределы , говорят нам о том, что гипербола не ограничена сверху и не ограничена снизу .

    Исследуем функцию на бесконечности: , то есть, если мы начнем уходить по оси влево (или вправо) на бесконечность, то «игреки» стройным шагом будут бесконечно близко приближаться к нулю, и, соответственно, ветви гиперболы бесконечно близко приближаться к оси .

    Таким образом, ось является горизонтальной асимптотой для графика функции, если «икс» стремится к плюс или минус бесконечности.

    Функция является нечётной , а, значит, гипербола симметрична относительно начала координат. Данный факт очевиден из чертежа, кроме того, легко проверяется аналитически: .

    График функции вида () представляет собой две ветви гиперболы .

    Если , то гипербола расположена в первой и третьей координатных четвертях (см. рисунок выше).

    Если , то гипербола расположена во второй и четвертой координатных четвертях .

    Указанную закономерность места жительства гиперболы нетрудно проанализировать с точки зрения геометрических преобразований графиков .

    Пример 3

    Построить правую ветвь гиперболы

    Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

    Выполним чертеж:


    Не составит труда построить и левую ветвь гиперболы, здесь как раз поможет нечетность функции. Грубо говоря, в таблице поточечного построения мысленно добавляем к каждому числу минус, ставим соответствующие точки и прочерчиваем вторую ветвь.

    Детальную геометрическую информацию о рассмотренной линии можно найти в статье Гипербола и парабола .

    График показательной функции

    В данном параграфе я сразу рассмотрю экспоненциальную функцию , поскольку в задачах высшей математики в 95% случаев встречается именно экспонента.

    Напоминаю, что – это иррациональное число: , это потребуется при построении графика, который, собственно, я без церемоний и построю. Трёх точек, пожалуй, хватит:

    График функции пока оставим в покое, о нём позже.

    Основные свойства функции :

    Принципиально так же выглядят графики функций , и т. д.

    Должен сказать, что второй случай встречается на практике реже, но он встречается, поэтому я счел нужным включить его в данную статью.

    График логарифмической функции

    Рассмотрим функцию с натуральным логарифмом .
    Выполним поточечный чертеж:

    Если позабылось, что такое логарифм, пожалуйста, обратитесь к школьным учебникам.

    Основные свойства функции :

    Область определения :

    Область значений: .

    Функция не ограничена сверху: , пусть и медленно, но ветка логарифма уходит вверх на бесконечность.
    Исследуем поведение функции вблизи нуля справа: . Таким образом, ось является вертикальной асимптотой для графика функции при «икс» стремящемся к нулю справа.

    Обязательно нужно знать и помнить типовое значение логарифма : .

    Принципиально так же выглядит график логарифма при основании : , , (десятичный логарифм по основанию 10) и т.д. При этом, чем больше основание, тем более пологим будет график.

    Случай рассматривать не будем, что-то я не припомню, когда последний раз строил график с таким основанием. Да и логарифм вроде в задачах высшей математики ооочень редкий гость.

    В заключение параграфа скажу еще об одном факте: Экспоненциальная функция и логарифмическая функция – это две взаимно обратные функции . Если присмотреться к графику логарифма, то можно увидеть, что это – та же самая экспонента, просто она расположена немного по-другому.

    Графики тригонометрических функций

    С чего начинаются тригонометрические мучения в школе? Правильно. С синуса

    Построим график функции

    Данная линия называется синусоидой .

    Напоминаю, что «пи» – это иррациональное число: , и в тригонометрии от него в глазах рябит.

    Основные свойства функции :

    Данная функция является периодической с периодом . Что это значит? Посмотрим на отрезок . Слева и справа от него бесконечно повторяется точно такой же кусок графика.

    Область определения : , то есть для любого значения «икс» существует значение синуса.

    Область значений: . Функция является ограниченной : , то есть, все «игреки» сидят строго в отрезке .
    Такого не бывает: или , точнее говоря, бывает, но указанные уравнения не имеют решения.

    Графиком функции называется множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты - соответствующим значениям функции.

    В следующей таблице указаны средние месячные температуры в столице нашей страны городе Минске.

    п

    t,V

    Здесь аргументом является порядковый номер месяца, а значением функции - температура воздуха в градусах Цельсия. Например, из этой таблицы мы узнаем, что в апреле среднемесячная температура составляет 5,3 °С.

    Функциональная зависимость может быть задана графиком.

    На рисунке рис 1 представлен график движения тела, брошенного под углом 6СГ к горизонту с начальной скоростью 20 м/с.

    С помощью графика функции можно по значению аргумента найти соответствующее значение функции. По графику на рисунке 1 определяем, что, например, через 2 с от начала движения тело находилось на высоте 15 м, а через 3 с на высоте 7,8 м (рис. 2).

    Можно также решить и обратную задачу, именно по данному значению а функции найти те значения аргумента, при которых функция принимает это значение а. Например, по графику на рисунке 1 находим, что на высоте 10 м тело находилось через 0,7 с и через 2,8 с от начала движения (рис. 3),

    Есть приборы, которые вырисовывают графики зависимостей между величинами. Это барографы - приборы для фиксации зависимости атмосферного давления от времени, термографы - приборы для фиксации зависимости температуры от времени, кардиографы - приборы для графической регистрации деятельности сердца и др. На рисунке 102 схематически изображен термограф. Его барабан равномерно вращается. Бумаги, намотанной на барабан, касается самописец, который в зависимости от температуры поднимается и опускается и вырисовывает на бумаге определенную линию.

    От представления функции формулой можно перейти к ее представлению таблицей и графиком.