How to solve trigonometric equations for dummies. Solution of the simplest trigonometric equations

Trigonometric equations are not the easiest topic. Painfully they are diverse.) For example, these:

sin2x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

Etc...

But these (and all other) trigonometric monsters have two common and obligatory features. First - you won't believe it - there are trigonometric functions in the equations.) Second: all expressions with x are within these same functions. And only there! If x appears somewhere outside, For example, sin2x + 3x = 3, this will be a mixed type equation. Such equations require an individual approach. Here we will not consider them.

We will not solve evil equations in this lesson either.) Here we will deal with the simplest trigonometric equations. Why? Yes, because the decision any trigonometric equations consists of two stages. At the first stage, the evil equation is reduced to a simple one by various transformations. On the second - this simplest equation is solved. No other way.

So, if you have problems in the second stage, the first stage does not make much sense.)

What do elementary trigonometric equations look like?

sinx = a

cosx = a

tgx = a

ctgx = a

Here A stands for any number. Any.

By the way, inside the function there may be not a pure x, but some kind of expression, such as:

cos(3x+π /3) = 1/2

etc. This complicates life, but does not affect the method of solving the trigonometric equation.

How to solve trigonometric equations?

Trigonometric equations can be solved in two ways. The first way: using logic and a trigonometric circle. We will explore this path here. The second way - using memory and formulas - will be considered in the next lesson.

The first way is clear, reliable, and hard to forget.) It is good for solving trigonometric equations, inequalities, and all sorts of tricky non-standard examples. Logic is stronger than memory!

We solve equations using a trigonometric circle.

We include elementary logic and the ability to use a trigonometric circle. Can't you!? However... It will be difficult for you in trigonometry...) But it doesn't matter. Take a look at the lessons "Trigonometric circle ...... What is it?" and "Counting angles on a trigonometric circle." Everything is simple there. Unlike textbooks...)

Ah, you know!? And even mastered "Practical work with a trigonometric circle"!? Accept congratulations. This topic will be close and understandable to you.) What is especially pleasing, trigonometric circle it doesn't matter which equation you solve. Sine, cosine, tangent, cotangent - everything is the same for him. The solution principle is the same.

So we take any elementary trigonometric equation. At least this:

cosx = 0.5

I need to find X. If to speak human language, need to find the angle (x) whose cosine is 0.5.

How did we use the circle before? We drew a corner on it. In degrees or radians. And immediately seen trigonometric functions of this angle. Now let's do the opposite. Draw a cosine equal to 0.5 on the circle and immediately we'll see corner. It remains only to write down the answer.) Yes, yes!

We draw a circle and mark the cosine equal to 0.5. On the cosine axis, of course. Like this:

Now let's draw the angle that this cosine gives us. Hover your mouse over the picture (or touch the picture on a tablet), and see this same corner X.

Which angle has a cosine of 0.5?

x \u003d π / 3

cos 60°= cos( π /3) = 0,5

Some people will grunt skeptically, yes... They say, was it worth it to fence the circle, when everything is clear anyway... You can, of course, grunt...) But the fact is that this is an erroneous answer. Or rather, inadequate. Connoisseurs of the circle understand that there are still a whole bunch of angles that also give a cosine equal to 0.5.

If you turn the movable side OA for a full turn, point A will return to its original position. With the same cosine equal to 0.5. Those. the angle will change 360° or 2π radians, and cosine is not. The new angle 60° + 360° = 420° will also be a solution to our equation, because

There are an infinite number of such full rotations... And all these new angles will be solutions to our trigonometric equation. And they all need to be written down somehow. All. Otherwise, the decision is not considered, yes ...)

Mathematics can do this simply and elegantly. In one short answer, write down infinite set solutions. Here's what it looks like for our equation:

x = π /3 + 2π n, n ∈ Z

I will decipher. Still write meaningfully nicer than stupidly drawing some mysterious letters, right?)

π /3 is the same angle that we saw on the circle and identified according to the table of cosines.

is one full turn in radians.

n - this is the number of complete, i.e. whole revolutions. It is clear that n can be 0, ±1, ±2, ±3.... and so on. As indicated by the short entry:

n ∈ Z

n belongs ( ) to the set of integers ( Z ). By the way, instead of the letter n letters can be used k, m, t etc.

This notation means that you can take any integer n . At least -3, at least 0, at least +55. What do you want. If you plug that number into your answer, you get a specific angle, which is sure to be the solution to our harsh equation.)

Or, in other words, x \u003d π / 3 is the only root of an infinite set. To get all the other roots, it is enough to add any number of full turns to π / 3 ( n ) in radians. Those. 2πn radian.

All? No. I specifically stretch the pleasure. To remember better.) We received only a part of the answers to our equation. I will write this first part of the solution as follows:

x 1 = π /3 + 2π n, n ∈ Z

x 1 - not one root, it is a whole series of roots, written in short form.

But there are other angles that also give a cosine equal to 0.5!

Let's return to our picture, according to which we wrote down the answer. Here she is:

Move the mouse over the image and see another corner that also gives a cosine of 0.5. What do you think it equals? The triangles are the same... Yes! He equal to the angle X , only plotted in the negative direction. This is the corner -X. But we have already calculated x. π /3 or 60°. Therefore, we can safely write:

x 2 \u003d - π / 3

And, of course, we add all the angles that are obtained through full turns:

x 2 = - π /3 + 2π n, n ∈ Z

That's all now.) In a trigonometric circle, we saw(who understands, of course)) All angles that give a cosine equal to 0.5. And they wrote down these angles in a short mathematical form. The answer is two infinite series of roots:

x 1 = π /3 + 2π n, n ∈ Z

x 2 = - π /3 + 2π n, n ∈ Z

This is the correct answer.

Hope, general principle for solving trigonometric equations with the help of a circle is understandable. We mark on the circle the cosine (sine, tangent, cotangent) from given equation, draw the corners corresponding to it and write down the answer. Of course, you need to figure out what kind of corners we are saw on the circle. Sometimes it's not so obvious. Well, as I said, logic is required here.)

For example, let's analyze another trigonometric equation:

Please note that the number 0.5 is not the only possible number in the equations!) It's just more convenient for me to write it than roots and fractions.

We work according to the general principle. We draw a circle, mark (on the sine axis, of course!) 0.5. We draw at once all the angles corresponding to this sine. We get this picture:

Let's deal with the angle first. X in the first quarter. We recall the table of sines and determine the value of this angle. The matter is simple:

x \u003d π / 6

We recall full turns and, with a clear conscience, write down the first series of answers:

x 1 = π /6 + 2π n, n ∈ Z

Half the job is done. Now we need to define second corner... This is trickier than in cosines, yes ... But logic will save us! How to determine the second angle through x? Yes Easy! The triangles in the picture are the same, and the red corner X equal to the angle X . Only it is counted from the angle π in the negative direction. That's why it's red.) And for the answer, we need an angle measured correctly from the positive semiaxis OX, i.e. from an angle of 0 degrees.

Hover the cursor over the picture and see everything. I removed the first corner so as not to complicate the picture. The angle of interest to us (drawn in green) will be equal to:

π - x

x we know it π /6 . So the second angle will be:

π - π /6 = 5π /6

Again, we recall the addition of full revolutions and write down the second series of answers:

x 2 = 5π /6 + 2π n, n ∈ Z

That's all. A complete answer consists of two series of roots:

x 1 = π /6 + 2π n, n ∈ Z

x 2 = 5π /6 + 2π n, n ∈ Z

Equations with tangent and cotangent can be easily solved using the same general principle for solving trigonometric equations. Unless, of course, you know how to draw the tangent and cotangent on a trigonometric circle.

In the examples above, I used the tabular value of sine and cosine: 0.5. Those. one of those meanings that the student knows must. Now let's expand our capabilities to all other values. Decide, so decide!)

So, let's say we need to solve the following trigonometric equation:

This cosine value in summary tables No. We coolly ignore this terrible fact. We draw a circle, mark 2/3 on the cosine axis and draw the corresponding angles. We get this picture.

We understand, for starters, with an angle in the first quarter. To know what x is equal to, they would immediately write down the answer! We don't know... Failure!? Calm! Mathematics does not leave its own in trouble! She invented arc cosines for this case. Do not know? In vain. Find out. It's a lot easier than you think. According to this link, there is not a single tricky spell about "inverse trigonometric functions" ... It's superfluous in this topic.

If you're in the know, just say to yourself, "X is an angle whose cosine is 2/3." And immediately, purely by definition of the arccosine, we can write:

We remember about additional revolutions and calmly write down the first series of roots of our trigonometric equation:

x 1 = arccos 2/3 + 2π n, n ∈ Z

The second series of roots is also written almost automatically, for the second angle. Everything is the same, only x (arccos 2/3) will be with a minus:

x 2 = - arccos 2/3 + 2π n, n ∈ Z

And all things! This is the correct answer. Even easier than with tabular values. You don’t need to remember anything.) By the way, the most attentive will notice that this picture with the solution through the arc cosine is essentially no different from the picture for the equation cosx = 0.5.

Exactly! The general principle on that and the general! I specifically drew two almost identical pictures. The circle shows us the angle X by its cosine. It is a tabular cosine, or not - the circle does not know. What kind of angle is this, π / 3, or what kind of arc cosine is up to us to decide.

With a sine the same song. For example:

Again we draw a circle, mark the sine equal to 1/3, draw the corners. It turns out this picture:

And again the picture is almost the same as for the equation sinx = 0.5. Again we start from the corner in the first quarter. What is x equal to if its sine is 1/3? No problem!

So the first pack of roots is ready:

x 1 = arcsin 1/3 + 2π n, n ∈ Z

Let's take a look at the second angle. In the example with a table value of 0.5, it was equal to:

π - x

So here it will be exactly the same! Only x is different, arcsin 1/3. So what!? You can safely write the second pack of roots:

x 2 = π - arcsin 1/3 + 2π n, n ∈ Z

This is a completely correct answer. Although it does not look very familiar. But it's understandable, I hope.)

This is how trigonometric equations are solved using a circle. This path is clear and understandable. It is he who saves in trigonometric equations with the selection of roots on a given interval, in trigonometric inequalities - they are generally solved almost always in a circle. In short, in any tasks that are a little more complicated than standard ones.

Putting knowledge into practice?

Solve trigonometric equations:

At first it is simpler, directly on this lesson.

Now it's more difficult.

Hint: here you have to think about the circle. Personally.)

And now outwardly unpretentious ... They are also called special cases.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Hint: here you need to figure out in a circle where there are two series of answers, and where there is one ... And how to write down one instead of two series of answers. Yes, so that not a single root from an infinite number is lost!)

Well, quite simple):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Hint: here you need to know what is the arcsine, arccosine? What is arc tangent, arc tangent? The simplest definitions. But you don’t need to remember any tabular values!)

The answers are, of course, in disarray):

x 1= arcsin0,3 + 2πn, n ∈ Z
x 2= π - arcsin0.3 + 2

Not everything works out? Happens. Read the lesson again. Only thoughtfully(there is such an obsolete word...) And follow the links. The main links are about the circle. Without it in trigonometry - how to cross the road blindfolded. Sometimes it works.)

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

When solving many math problems , especially those that occur before grade 10, the order of actions performed that will lead to the goal is clearly defined. Such tasks include, for example, linear and quadratic equations, linear and square inequalities, fractional equations, and equations that reduce to quadratic equations. The principle of successful solution of each of the mentioned tasks is as follows: it is necessary to establish what type the problem being solved belongs to, remember the necessary sequence of actions that will lead to the desired result, i.e. answer and follow these steps.

Obviously, success or failure in solving a particular problem depends mainly on how correctly the type of the equation being solved is determined, how correctly the sequence of all stages of its solution is reproduced. Of course, in this case, it is necessary to have the skills to perform identical transformations and calculations.

A different situation occurs with trigonometric equations. It is not difficult to establish the fact that the equation is trigonometric. Difficulties arise when determining the sequence of actions that would lead to the correct answer.

By appearance equations sometimes it is difficult to determine its type. And without knowing the type of equation, it is almost impossible to choose the right one from several dozen trigonometric formulas.

To solve the trigonometric equation, we must try:

1. bring all the functions included in the equation to "the same angles";
2. bring the equation to "the same functions";
3. factorize the left side of the equation, etc.

Consider basic methods for solving trigonometric equations.

I. Reduction to the simplest trigonometric equations

Solution scheme

Step 1. express trigonometric function through known components.

Step 2 Find function argument using formulas:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

sin x = a; x \u003d (-1) n arcsin a + πn, n Є Z.

tan x = a; x \u003d arctg a + πn, n Є Z.

ctg x = a; x \u003d arcctg a + πn, n Є Z.

Step 3 Find an unknown variable.

Example.

2 cos(3x – π/4) = -√2.

Solution.

1) cos(3x - π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Answer: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variable substitution

Solution scheme

Step 1. Bring the equation to an algebraic form with respect to one of the trigonometric functions.

Step 2 Denote the resulting function by the variable t (if necessary, introduce restrictions on t).

Step 3 Write down and solve the resulting algebraic equation.

Step 4 Make a reverse substitution.

Step 5 Solve the simplest trigonometric equation.

Example.

2cos 2 (x/2) - 5sin (x/2) - 5 = 0.

Solution.

1) 2(1 - sin 2 (x/2)) - 5sin (x/2) - 5 = 0;

2sin 2(x/2) + 5sin(x/2) + 3 = 0.

2) Let sin (x/2) = t, where |t| ≤ 1.

3) 2t 2 + 5t + 3 = 0;

t = 1 or e = -3/2 does not satisfy the condition |t| ≤ 1.

4) sin (x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Answer: x = π + 4πn, n Є Z.

III. Equation order reduction method

Solution scheme

Step 1. Replace this equation with a linear one using the power reduction formulas:

sin 2 x \u003d 1/2 (1 - cos 2x);

cos 2 x = 1/2 (1 + cos 2x);

tan 2 x = (1 - cos 2x) / (1 + cos 2x).

Step 2 Solve the resulting equation using methods I and II.

Example.

cos2x + cos2x = 5/4.

Solution.

1) cos 2x + 1/2 (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Answer: x = ±π/6 + πn, n Є Z.

IV. Homogeneous equations

Solution scheme

Step 1. Bring this equation to the form

a) a sin x + b cos x = 0 (homogeneous equation of the first degree)

or to the view

b) a sin 2 x + b sin x cos x + c cos 2 x = 0 (homogeneous equation of the second degree).

Step 2 Divide both sides of the equation by

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

and get the equation for tg x:

a) a tg x + b = 0;

b) a tg 2 x + b arctg x + c = 0.

Step 3 Solve the equation using known methods.

Example.

5sin 2 x + 3sin x cos x - 4 = 0.

Solution.

1) 5sin 2 x + 3sin x cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3sin x cos x - 4cos 2 x \u003d 0 / cos 2 x ≠ 0.

2) tg 2 x + 3tg x - 4 = 0.

3) Let tg x = t, then

t 2 + 3t - 4 = 0;

t = 1 or t = -4, so

tg x = 1 or tg x = -4.

From the first equation x = π/4 + πn, n Є Z; from the second equation x = -arctg 4 + πk, k Є Z.

Answer: x = π/4 + πn, n Є Z; x \u003d -arctg 4 + πk, k Є Z.

V. Method for transforming an equation using trigonometric formulas

Solution scheme

Step 1. Using all sorts trigonometric formulas, bring this equation to the equation solved by methods I, II, III, IV.

Step 2 Solve the resulting equation using known methods.

Example.

sinx + sin2x + sin3x = 0.

Solution.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 or 2cos x + 1 = 0;

From the first equation 2x = π/2 + πn, n Є Z; from the second equation cos x = -1/2.

We have x = π/4 + πn/2, n Є Z; from the second equation x = ±(π – π/3) + 2πk, k Є Z.

As a result, x \u003d π / 4 + πn / 2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Answer: x \u003d π / 4 + πn / 2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

The ability and skills to solve trigonometric equations are very important, their development requires considerable effort, both on the part of the student and the teacher.

Many problems of stereometry, physics, etc. are associated with the solution of trigonometric equations. The process of solving such problems, as it were, contains many of the knowledge and skills that are acquired when studying the elements of trigonometry.

Trigonometric equations occupy an important place in the process of teaching mathematics and personality development in general.

Do you have any questions? Don't know how to solve trigonometric equations?
To get the help of a tutor - register.
The first lesson is free!

site, with full or partial copying of the material, a link to the source is required.

Once I witnessed a conversation between two applicants:

– When do you need to add 2πn, and when - πn? I can't remember!

- And I have the same problem.

I wanted to say to them: “It is not necessary to memorize, but to understand!”

This article is addressed primarily to high school students and, I hope, will help them with "understanding" to solve the simplest trigonometric equations:

Number circle

Along with the concept of a number line, there is also the concept of a number circle. As we know, V rectangular system coordinate circle, centered at the point (0; 0) and radius 1, is called unit. Imagine a number line with a thin thread and wind it around this circle: the reference point (point 0), attach it to the “right” point of the unit circle, wrap the positive semiaxis counterclockwise, and the negative semiaxis in the direction (Fig. 1). Such a unit circle is called a number circle.

Number circle properties

  • Every real number is at one point on the number circle.
  • There are infinitely many real numbers on each point of the number circle. Since the length of the unit circle is 2π, the difference between any two numbers at one point on the circle is equal to one of the numbers ±2π; ±4π; ±6π; …

Let's conclude: knowing one of the numbers of point A, we can find all the numbers of point A.

Let's draw the AC diameter (Fig. 2). Since x_0 is one of the numbers of the point A, then the numbers x_0±π ; x_0±3π; x_0±5π; … and only they will be the numbers of the point C. Let's choose one of these numbers, say, x_0+π, and use it to write down all the numbers of the point C: x_C=x_0+π+2πk ,k∈Z. Note that the numbers at points A and C can be combined into one formula: x_(A ; C)=x_0+πk ,k∈Z (for k = 0; ±2; ±4; ... we get the numbers of point A, and for k = ±1, ±3, ±5, … are the numbers of the point C).

Let's conclude: knowing one of the numbers on one of the points A or C of the diameter AC, we can find all the numbers on these points.

  • Two opposite numbers are located on points of the circle that are symmetrical about the abscissa axis.

Let's draw a vertical chord AB (Fig. 2). Since points A and B are symmetrical about the Ox axis, the number -x_0 is located at point B and, therefore, all numbers of point B are given by the formula: x_B=-x_0+2πk ,k∈Z. We write the numbers at points A and B with one formula: x_(A ; B)=±x_0+2πk ,k∈Z. Let's conclude: knowing one of the numbers at one of the points A or B of the vertical chord AB, we can find all the numbers at these points. Consider the horizontal chord AD and find the numbers of the point D (Fig. 2). Since BD is the diameter and the number -x_0 belongs to point B, then -x_0 + π is one of the numbers of point D and, therefore, all numbers of this point are given by the formula x_D=-x_0+π+2πk ,k∈Z. Numbers at points A and D can be written using one formula: x_(A ; D)=(-1)^k∙x_0+πk ,k∈Z . (for k= 0; ±2; ±4; ... we get the numbers of point A, and for k = ±1; ±3; ±5; ... - the numbers of point D).

Let's conclude: knowing one of the numbers at one of the points A or D of the horizontal chord AD, we can find all the numbers at these points.

Sixteen main points of the number circle

In practice, the solution of most of the simplest trigonometric equations is associated with sixteen points of the circle (Fig. 3). What are these dots? Red, blue and green dots divide the circle by 12 equal parts. Since the length of the semicircle is π, the length of the arc A1A2 is π/2, the length of the arc A1B1 is π/6, and the length of the arc A1C1 is π/3.

Now we can specify one number on the points:

π/3 on С1 and

The vertices of the orange square are the midpoints of the arcs of each quarter, so the length of the arc A1D1 is equal to π/4, and hence π/4 is one of the numbers of the point D1. Using the properties of the number circle, we can write down all the numbers at all the marked points of our circle using formulas. The figure also shows the coordinates of these points (we omit the description of their acquisition).

Having learned the above, we now have sufficient preparation for solving special cases (for nine values ​​of the number a) the simplest equations.

Solve Equations

1)sinx=1⁄(2).

– What is required of us?

Find all those numbers x whose sine is 1/2.

Recall the definition of sine: sinx - the ordinate of the point of the number circle, on which the number x is located. On the circle we have two points, the ordinate of which is equal to 1/2. These are the ends of the horizontal chord B1B2. This means that the requirement “solve the equation sinx=1⁄2” is equivalent to the requirement “find all numbers at point B1 and all numbers at point B2”.

2)sinx=-√3⁄2 .

We need to find all the numbers at the points C4 and C3.

3) sinx=1. On the circle we have only one point with ordinate 1 - point A2 and, therefore, we need to find only all the numbers of this point.

Answer: x=π/2+2πk , k∈Z .

4)sinx=-1 .

Only point A_4 has ordinate -1. All numbers of this point will be the horses of the equation.

Answer: x=-π/2+2πk , k∈Z .

5) sinx=0 .

On the circle we have two points with ordinate 0 - points A1 and A3. You can specify the numbers on each of the points separately, but given that these points are diametrically opposed, it is better to combine them into one formula: x=πk ,k∈Z .

Answer: x=πk ,k∈Z .

6)cosx=√2⁄2 .

Recall the definition of cosine: cosx - abscissa of the point of the numerical circle on which the number x is located. On the circle we have two points with the abscissa √2⁄2 - the ends of the horizontal chord D1D4. We need to find all the numbers at these points. We write them down by combining them into one formula.

Answer: x=±π/4+2πk , k∈Z .

7) cosx=-1⁄2 .

We need to find the numbers at the points C_2 and C_3 .

Answer: x=±2π/3+2πk , k∈Z .

10) cosx=0 .

Only points A2 and A4 have abscissa 0, which means that all numbers at each of these points will be solutions to the equation.
.

The solutions of the equation of the system are the numbers at the points B_3 and B_4. Inequality cosx<0 удовлетворяют только числа b_3
Answer: x=-5π/6+2πk , k∈Z .

Note that for any admissible value of x, the second factor is positive and, therefore, the equation is equivalent to the system

The solutions of the system equation are the number of points D_2 and D_3 . The numbers of the point D_2 do not satisfy the inequality sinx≤0.5, but the numbers of the point D_3 do.


blog.site, with full or partial copying of the material, a link to the source is required.

The concept of solving trigonometric equations.

  • To solve a trigonometric equation, convert it to one or more basic trigonometric equations. Solving the trigonometric equation ultimately comes down to solving the four basic trigonometric equations.
  • Solution of basic trigonometric equations.

    • There are 4 types of basic trigonometric equations:
    • sin x = a; cos x = a
    • tan x = a; ctg x = a
    • Solving basic trigonometric equations involves looking at the various x positions on the unit circle, as well as using a conversion table (or calculator).
    • Example 1. sin x = 0.866. Using a conversion table (or calculator), you get the answer: x = π/3. The unit circle gives another answer: 2π/3. Remember: all trigonometric functions are periodic, that is, their values ​​are repeated. For example, the periodicity of sin x and cos x is 2πn, and the periodicity of tg x and ctg x is πn. So the answer is written like this:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Example 2 cos x = -1/2. Using a conversion table (or calculator), you get the answer: x = 2π/3. The unit circle gives another answer: -2π/3.
    • x1 = 2π/3 + 2π; x2 = -2π/3 + 2π.
    • Example 3. tg (x - π/4) = 0.
    • Answer: x \u003d π / 4 + πn.
    • Example 4. ctg 2x = 1.732.
    • Answer: x \u003d π / 12 + πn.
  • Transformations used in solving trigonometric equations.

    • To transform trigonometric equations, algebraic transformations (factoring, reduction of homogeneous terms, etc.) and trigonometric identities are used.
    • Example 5. Using trigonometric identities, the equation sin x + sin 2x + sin 3x = 0 is converted to the equation 4cos x*sin (3x/2)*cos (x/2) = 0. Thus, the following basic trigonometric equations need to be solved: cos x = 0; sin(3x/2) = 0; cos(x/2) = 0.
    • Finding angles from known values ​​of functions.

      • Before learning how to solve trigonometric equations, you need to learn how to find angles from known values ​​of functions. This can be done using a conversion table or calculator.
      • Example: cos x = 0.732. The calculator will give the answer x = 42.95 degrees. The unit circle will give additional angles, the cosine of which is also equal to 0.732.
    • Set aside the solution on the unit circle.

      • You can put solutions to the trigonometric equation on the unit circle. The solutions of the trigonometric equation on the unit circle are the vertices of a regular polygon.
      • Example: The solutions x = π/3 + πn/2 on the unit circle are the vertices of the square.
      • Example: The solutions x = π/4 + πn/3 on the unit circle are the vertices of a regular hexagon.
    • Methods for solving trigonometric equations.

      • If the given trigonometric equation contains only one trigonometric function, solve this equation as a basic trigonometric equation. If a given equation includes two or more trigonometric functions, then there are 2 methods for solving such an equation (depending on the possibility of its transformation).
        • Method 1
      • Transform this equation into an equation of the form: f(x)*g(x)*h(x) = 0, where f(x), g(x), h(x) are the basic trigonometric equations.
      • Example 6. 2cos x + sin 2x = 0. (0< x < 2π)
      • Solution. Using the double angle formula sin 2x = 2*sin x*cos x, replace sin 2x.
      • 2cos x + 2*sin x*cos x = 2cos x*(sin x + 1) = 0. Now solve two basic trigonometric equations: cos x = 0 and (sin x + 1) = 0.
      • Example 7 cos x + cos 2x + cos 3x = 0. (0< x < 2π)
      • Solution: Using trigonometric identities, transform this equation into an equation of the form: cos 2x(2cos x + 1) = 0. Now solve two basic trigonometric equations: cos 2x = 0 and (2cos x + 1) = 0.
      • Example 8. sin x - sin 3x \u003d cos 2x. (0< x < 2π)
      • Solution: Using trigonometric identities, transform this equation into an equation of the form: -cos 2x*(2sin x + 1) = 0. Now solve two basic trigonometric equations: cos 2x = 0 and (2sin x + 1) = 0.
        • Method 2
      • Convert the given trigonometric equation to an equation containing only one trigonometric function. Then replace this trigonometric function with some unknown, for example, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t, etc.).
      • Example 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0< x < 2π).
      • Solution. In this equation, replace (cos^2 x) with (1 - sin^2 x) (according to the identity). The transformed equation looks like:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Replace sin x with t. Now the equation looks like: 5t^2 - 4t - 9 = 0. This is a quadratic equation with two roots: t1 = -1 and t2 = 9/5. The second root t2 does not satisfy the range of the function (-1< sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Example 10. tg x + 2 tg^2 x = ctg x + 2
      • Solution. Replace tg x with t. Rewrite the original equation as follows: (2t + 1)(t^2 - 1) = 0. Now find t and then find x for t = tg x.
  • The video course "Get an A" includes all the topics necessary for the successful passing of the exam in mathematics by 60-65 points. Completely all tasks 1-13 of the Profile USE in mathematics. Also suitable for passing the Basic USE in mathematics. If you want to pass the exam with 90-100 points, you need to solve part 1 in 30 minutes and without mistakes!

    Preparation course for the exam for grades 10-11, as well as for teachers. Everything you need to solve part 1 of the exam in mathematics (the first 12 problems) and problem 13 (trigonometry). And this is more than 70 points on the Unified State Examination, and neither a hundred-point student nor a humanist can do without them.

    All the necessary theory. Quick solutions, traps and secrets of the exam. All relevant tasks of part 1 from the Bank of FIPI tasks have been analyzed. The course fully complies with the requirements of the USE-2018.

    The course contains 5 large topics, 2.5 hours each. Each topic is given from scratch, simply and clearly.

    Hundreds of exam tasks. Text problems and probability theory. Simple and easy to remember problem solving algorithms. Geometry. Theory, reference material, analysis of all types of USE tasks. Stereometry. Cunning tricks for solving, useful cheat sheets, development of spatial imagination. Trigonometry from scratch - to task 13. Understanding instead of cramming. Visual explanation of complex concepts. Algebra. Roots, powers and logarithms, function and derivative. Base for solving complex problems of the 2nd part of the exam.