Формула обратной матрицы. Найти обратную матрицу онлайн. Матричный метод в экономическом анализе

1. Находим определитель исходной матрицы. Если , то матрица- вырожденная и обратной матрицыне существует. Если, то матрицаневырожденная и обратная матрица существует.

2. Находим матрицу , транспонированную к.

3. Находим алгебраические дополнения элементов и составляем из них присоединенную матрицу.

4. Составляем обратную матрицу по формуле .

5. Проверяем правильность вычисления обратной матрицы , исходя из ее определения:.

Пример. Найти матрицу, обратную данной: .

Р е ш е н и е.

1) Определитель матрицы

.

2) Находим алгебраические дополнения элементов матрицы и составляем из них присоединенную матрицу :

3) Вычисляем обратную матрицу:

,

4) Проверяем:

№4 Ранг матрицы. Линейная независимость строк матрицы

Для решения и исследования ряда математических и прикладных задач важное значение имеет понятие ранга матрицы.

В матрице размеромвычеркиванием каких-либо строк и столбцов можно вычленить квадратные подматрицы-го порядка, где. Определители таких подматриц называютсяминорами -го порядка матрицы .

Например, из матриц можно получить подматрицы 1, 2 и 3-го порядка.

Определение. Рангом матрицы называется наивысший порядок отличных от нуля миноров этой матрицы. Обозначение:или.

Из определения следует:

1) Ранг матрицы не превосходит меньшего из ее размеров, т.е..

2) тогда и только тогда, когда все элементы матрицы равны нулю, т.е..

3) Для квадратной матрицы n-го порядка тогда и только тогда, когда матрица- невырожденная.

Поскольку непосредственный перебор всех возможных миноров матрицы , начиная с наибольшего размера, затруднителен (трудоемок), то пользуются элементарными преобразованиями матрицы, сохраняющими ранг матрицы.

Элементарные преобразования матрицы:

1) Отбрасывание нулевой строки (столбца).

2) Умножение всех элементов строки (столбца) на число .

3) Изменение порядка строк (столбцов) матрицы.

4) Прибавление к каждому элементу одной строки (столбца) соответствующих элементов другой строки (столбца), умноженных на любое число.

5) Транспонирование матрицы.

Определение. Матрица , полученная из матрицыпри помощи элементарных преобразований, называется эквивалентной и обозначаетсяА В .

Теорема. Ранг матрицы не изменяется при элементарных преобразованиях матрицы.

С помощью элементарных преобразований можно привести матрицу к так называемому ступенчатому виду, когда вычисление ее ранга не представляет труда.

Матрица называется ступенчатой если она имеет вид:

Очевидно, что ранг ступенчатой матрицы равен числу ненулевых строк , т.к. имеется минор-го порядка, не равный нулю:

.

Пример. Определить ранг матрицы с помощью элементарных преобразований.

Ранг матрицы равен количеству ненулевых строк, т.е. .

№5Линейная независимость строк матрицы

Дана матрица размера

Обозначим строки матрицы следующим образом:

Две строки называются равными , если равны их соответствующие элементы. .

Введем операции умножения строки на число и сложение строк как операции, проводимые поэлементно:

Определение. Строка называется линейной комбинацией строкматрицы, если она равна сумме произведений этих строк на произвольные действительные числа(любые числа):

Определение. Строки матрицы называютсялинейно зависимыми , если существует такие числа , не равные одновременно нулю, что линейная комбинация строк матрицы равна нулевой строке:

Где . (1.1)

Линейная зависимость строк матрицы обозначает, что хотя бы 1 строка матрицы является линейной комбинацией остальных.

Определение. Если линейная комбинация строк (1.1) равна нулю тогда и только тогда, когда все коэффициенты , то строкиназываютсялинейно независимыми .

Теорема о ранге матрицы . Ранг матрицы равен максимальному числу ее линейно независимых строк или столбцов, через которые линейно выражаются все остальные строки (столбцы).

Теорема играет принципиальную роль в матричном анализе, в частности, при исследовании систем линейных уравнений.

№6 Решение системы линейных уравнений снеизвестными

Системы линейных уравнений находят широкое применение в экономике.

Система линейных уравнений спеременными имеет вид:

,

где () - произвольные числа, называемыекоэффициентами при переменных и свободными членами уравнений , соответственно.

Краткая запись: ().

Определение. Решением системы называется такая совокупность значений , при подстановке которых каждое уравнение системы обращается в верное равенство.

1) Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она не имеет решений.

2) Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения.

3) Две системы уравнений называются равносильными (эквивалентными ) , если они имеют одно и то же множество решений (например, одно решение).

Обратная матрица для данной это такая матрица, умножение исходной на которую дает единичную матрицу: Обязательным и достаточным условием наличия обратной матрицы является неравенство нулю детерминанта исходной (что в свою очередь подразумевает, что матрица должна быть квадратная). Если же определитель матрицы равняется нулю, то ее называют вырожденной и такая матрица не имеет обратной. В высшей математике обратные матрицы имеют важное значение и применяются для решения ряда задач. Например, на нахождении обратной матрицы построен матричный метод решения систем уравнений. Наш сервис сайт позволяет вычислять обратную матрицу онлайн двумя методами: методом Гаусса-Жордана и с помощью матрицы алгебраических дополнений. Прервый подразумевает большое количество элементарных преобразований внутри матрицы, второй - вычисление детерминанта и алгебраических дополнений ко всем элементам. Для вычисления определителя матрицы онлайн вы можете воспользоваться другим нашим сервисом - Вычисление детерминанта матрицы онлайн

.

Найти обратную матрицу на сайт

сайт позволяет находить обратную матрицу онлайн быстро и бесплатно. На сайте произвордятся вычисления нашим сервисом и выдается результат с подробным решением по нахождению обратной матрицы . Сервер всегда выдает только точный и верный ответ. В задачах по определению обратной матрицы онлайн , необходимо, чтобы определитель матрицы был отличным от нуля, иначе сайт сообщит о невозможности найти обратную матрицу ввиду равенства нулю определителя исходной матрицы. Задача по нахождению обратной матрицы встречается во многих разделах математики, являясь одним из самых базовых понятий алгебры и математическим инструментом в прикладных задачах. Самостоятельное определение обратной матрицы требует значительных усилий, много времени, вычислений и большой внимательности, чтобы не допустить описку или мелкую ошибку в вычислениях. Поэтому наш сервис по нахождению обратной матрицы онлайн значительно облегчит вам задачу и станет незаменимым инструментом для решения математических задач. Даже если вы находите обратную матрицу самостоятельно, мы рекомендуем проверить ваше решение на нашем сервере. Ввведите вашу исходную матрицу у нас на Вычисление обратной матрицы онлайн и сверьте ваш ответ. Наша система никогда не ошибается и находит обратную матрицу заданной размерности в режиме онлайн мгновенно! На сайте сайт допускаются символьные записи в элементах матриц , в этом случае обратная матрица онлайн будет представлена в общем символьном виде.

АЛГЕБРАИЧЕСКИЕ ДОПОЛНЕНИЯ И МИНОРЫ

Пусть имеем определитель третьего порядка: .

Минором , соответствующим данному элементу a ij определителя третьего порядка, называется определитель второго порядка, полученный из данного вычёркиванием строки и столбца, на пересечении которых стоит данный элемент, т.е. i -ой строки и j -го столбца. Миноры соответствующие данному элементу a ij будем обозначать M ij .

Например , минором M 12 , соответствующим элементу a 12 , будет определитель , который получается вычёркиванием из данного определителя 1-ой строки и 2-го столбца.

Таким образом, формула, определяющая определитель третьего порядка, показывает, что этот определитель равен сумме произведений элементов 1-ой строки на соответствующие им миноры; при этом минор, соответствующий элементу a 12 , берётся со знаком “–”, т.е. можно записать, что

. (1)

Аналогично можно ввести определения миноров для определителей второго порядка и высших порядков.

Введём ещё одно понятие.

Алгебраическим дополнением элемента a ij определителя называется его минор M ij , умноженный на (–1) i+j .

Алгебраическое дополнение элемента a ij обозначается A ij .

Из определения получаем, что связь между алгебраическим дополнением элемента и его минором выражается равенством A ij = (–1) i+j M ij .

Например,

Пример. Дан определитель . Найти A 13 , A 21 , A 32 .

Легко видеть, что используя алгебраические дополнения элементов, формулу (1) можно записать в виде:

Аналогично этой формуле можно получить разложение определителя по элементам любой строки или столбца.

Например, разложение определителя по элементам 2-ой строки можно получить следующим образом. Согласно свойству 2 определителя имеем:

Разложим полученный определитель по элементам 1-ой строки.

. (2)

Отсюда т.к. определители второго порядка в формуле (2) есть миноры элементов a 21 , a 22 , a 23 . Таким образом, , т.е. мы получили разложение определителя по элементам 2-ой строки.

Аналогично можно получить разложение определителя по элементам третьей строки. Используя свойство 1 определителей (о транспонировании), можно показать, что аналогичные разложения справедливы и при разложении по элементам столбцов.

Таким образом, справедлива следующая теорема.

Теорема (о разложении определителя по заданной строке или столбцу). Определитель равен сумме произведений элементов какой–либо его строки (или столбца) на их алгебраические дополнения.

Всё вышесказанное справедливо и для определителей любого более высокого порядка.

Примеры.

ОБРАТНАЯ МАТРИЦА

Понятие обратной матрицы вводится только для квадратных матриц .

Если A – квадратная матрица, то обратной для неё матрицей называется матрица, обозначаемая A -1 и удовлетворяющая условию . (Это определение вводится по аналогии с умножением чисел)

Нахождение обратной матрицы - процесс, который состоит из достаточно простых действий. Но эти действия повторяются так часто, что процесс получается довольно продолжительным. Главное - не потерять внимание при решении.

При решении наиболее распространённым методом - алгебраических дополнений - потребуется:

При решении примеров мы разберём эти действия подробнее. А пока узнаем, что гласит теория об обратной матрице.

Для обратной матрицы существует уместная аналогия с обратным числом. Для каждого числа a , не равного нулю, существует такое число b , что произведение a и b равно единице: ab = 1 . Число b называется обратным для числа b . Например, для числа 7 обратным является число 1/7, так как 7*1/7=1.

Обратной матрицей , которую требуется отыскать для данной квадратной матрицы А , называется такая матрица

произведение на которую матрицы А справа является единичной матрицей, т.е,
. (1)

Единичной матрицей называется диагональная матрица, у которой все диагональные элементы равны единице.

Нахождение обратной матрицы - задача, которая чаще решается двумя методами:

  • методом алгебраических дополнений, при котором, как было замечено в начале урока, требуется находить определители, миноры и алгебраические дополнения и транспонировать матрицы;
  • методом исключения неизвестных Гаусса, при котором требуется производить элементарные преобразования матриц (складывать строки, умножать строки на одно и то же число и т. д.).

Для особо любознательных существуют и другие методы, например, метод линейных преобразований. На этом уроке разберём три упомянутых метода и алгоритмы нахождения обратной матрицы этими методами.

Теорема. Для каждой неособенной (невырожденной, несингулярной) квадратной матрицы можно найти обратную матрицу, и притом только одну. Для особенной (вырожденной, сингулярной) квадратной матрицы обратная матрица не существует.

Квадратная матрица называется неособенной (или невырожденной , несингулярной ), если её определитель не равен нулю, и особенной (или вырожденной , сингулярной ), если её определитель равен нулю.

Обратная матрица может быть найдена только для квадратной матрицы. Естественно, обратная матрица также будет квадратной и того же порядка, что и данная матрица. Матрица, для которой может быть найдена обратная матрица, называется обратимой матрицей.

Нахождение обратной матрицы методом исключения неизвестных Гаусса

Первый шаг для нахождения обратной матрицы методом исключения неизвестных Гаусса - приписать к матрице A единичную матрицу того же порядка, отделив их вертикальной чертой. Мы получим сдвоенную матрицу . Умножим обе части этой матрицы на , тогда получим

,

Алгоритм нахождения обратной матрицы методом исключения неизвестных Гаусса

1. К матрице A приписать единичную матрицу того же порядка.

2. Полученную сдвоенную матрицу преобразовать так, чтобы в левой её части получилась единичная матрица, тогда в правой части на месте единичной матрицы автоматически получится обратная матрица. Матрица A в левой части преобразуется в единичную матрицу путём элементарных преобразований матрицы.

2. Если в процессе преобразования матрицы A в единичную матрицу в какой-либо строке или в каком-либо столбце окажутся только нули, то определитель матрицы равен нулю, и, следовательно, матрица A будет вырожденной, и она не имеет обратной матрицы. В этом случае дальнейшее нахождение обратной матрицы прекращается.

Пример 2. Для матрицы

найти обратную матрицу.

и будем её преобразовывать, так чтобы в левой части получилась единичная матрица. Начинаем преобразования.

Умножим первую строку левой и правой матрицы на (-3) и сложим её со второй строкой, а затем умножим первую строку на (-4) и сложим её с третьей строкой, тогда получим

.

Чтобы по возможности не было дробных чисел при последующих преобразованиях, создадим предварительно единицу во второй строке в левой части сдвоенной матрицы. Для этого умножим вторую строку на 2 и вычтем из неё третью строку, тогда получим

.

Сложим первую строку со второй, а затем умножим вторую строку на (-9) и сложим её с третьей строкой. Тогда получим

.

Разделим третью строку на 8, тогда

.

Умножим третью строку на 2 и сложим её со второй строкой. Получается:

.

Переставим местами вторую и третью строку, тогда окончательно получим:

.

Видим, что в левой части получилась единичная матрица, следовательно, в правой части получилась обратная матрица . Таким образом:

.

Можно проверить правильность вычислений, умножим исходную матрицу на найденную обратную матрицу:

В результате должна получиться обратная матрица.

Проверить решение можно с помощью онлайн калькулятора для нахождения обратной матрицы .

Пример 3. Для матрицы

найти обратную матрицу.

Решение. Составляем сдвоенную матрицу

и будем её преобразовывать.

Первую строку умножаем на 3, а вторую на 2, и вычитаем из второй, а затем первую строку умножаем на 5, а третью на 2 и вычитаем из третьей строки, тогда получим

Обратная матрица — это матрица A −1 , при умножении на которую заданная начальная матрица A даёт в итоге единичную матрицу E :

АA −1 = A −1 A = E.

Метод обратной матрицы.

Метод обратной матрицы - это один из самых распространенных методов решения матриц и применяется для решения систем линейных алгебраических уравнений (СЛАУ) в случаях, когда число неизвестных соответствует количеству уравнений.

Пусть есть система n линейных уравнений с n неизвестными:

Такую систему можно записать как матричное уравнение A* X = B ,

где
- матрица системы,

- столбец неизвестных,

- столбец свободных коэффициентов.

Из выведенного матричного уравнения выражаем X путем умножения обеих частей матричного уравнения слева на A -1 , в результате чего имеем:

A -1 * A * X = A -1 * B

Зная, что A -1 * A = E , тогда E * X = A -1 * B либо X = A -1 * B .

Следующим шагом определяется обратная матрица A -1 и умножается на столбец свободных членов B .

Обратная матрица к матрице A существует лишь тогда, когда det A ≠ 0 . Ввиду этого при решении СЛАУ методом обратной матрицы первым делом находится det A . Если det A ≠ 0 , то у системы есть только одно решение, которое можно получить методом обратной матрицы, если же det A = 0 , то такая система методом обратной матрицы не решается.

Решение обратной матрицы.

Последовательность действий для решения обратной матрицы :

  1. Получаем определитель матрицы A . Если определитель больше нуля, решаем обратную матрицы дальше, если он равен нулю, то здесь обратную матрицу найти не удастся.
  2. Находим транспонированную матрицу AT .
  3. Ищем алгебраические дополнения, после чего заменяем все элементы матрицы их алгебраическими дополнениями.
  4. Собираем обратную матрицу из алгебраических дополнений: все элементы полученной матрицы делим на определитель исходно заданной матрицы. Итоговая матрица будет искомой обратной матрицей относительно исходной.

Приведенный ниже алгоритм решения обратной матрицы по сути такой же, как и приведенный выше, разница только в нескольких шагах: первым делом определяем алгебраические дополнения, а уже после этого вычисляем союзную матрицу C .

  1. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  2. Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
  3. Вычисляем алгебраические дополнения.
  4. Составляем союзную (взаимную, присоединённую) матрицу C .
  5. Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
  6. Проверяем выполненную работу: умножаем начальную и полученную матрицы, результатом должна стать единичная матрица.

Это лучше всего делать с помощью присоединённой матрицы.

Теорема: Если к квадратной матрице с правой стороны приписать единичную матрицу такого же порядка и при помощи элементарных преобразований над строками преобразовать начальную матрицу, стоящую слева, в единичную, то полученная с правой стороны будет обратной к начальной.

Пример нахождения обратной матрицы.

Задание. Для матрицы найти обратную методом присоединенной матрицы .

Решение. Дописываем к заданной матрице А справа единичную матрицу 2го порядка:

Из 1й строки вычитаем 2ю:

От второй строки отнимаем 2 первых: