Решение иррациональных уравнений. Как решать иррациональные уравнения. Примеры

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Yandex.RTB R-A-339285-1

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Довольно часто в уравнениях встречается знак корня и многие ошибочно считают, что такие уравнения сложные в решении. Для таких уравнений в математике существует специальный термин, которым и именуют уравнения с корнем - иррациональные уравнения.

Главным отличием в решении уравнений с корнем от других уравнений, например, квадратных, логарифмических, линейных, является то, что они не имеют стандартного алгоритма решения. Поэтому чтобы решить иррациональное уравнение необходимо проанализировать исходные данные и выбрать более подходящий вариант решения.

В большинстве случаев для решения данного рода уравнений используют метод возведения обеих частей уравнения в одну и ту же степень

Допустим, дано следующее уравнение:

\[\sqrt{(5x-16)}=x-2\]

Возводим обе части уравнения в квадрат:

\[\sqrt{(5х-16))}^2 =(x-2)^2\], откуда последовательно получаем:

Получив квадратное уравнение, находим его корни:

Ответ: \

Если выполнить подстановку данных значений в уравнение, то получим верное равенство, что говорит о правильности полученных данных.

Где можно решить уравнение с корнями онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Муниципальное общеобразовательное учреждение

«Куединская средняя общеобразовательная школа №2»

Способы решения иррациональных уравнений

Выполнила: Егорова Ольга,

Руководитель:

Учитель

математики,

высшей квалификационной

Введение ....……………………………………………………………………………………… 3

Раздел 1. Методы решения иррациональных уравнений …………………………………6

1.1 Решение иррациональных уравнений части С……….….….……………………21

Раздел 2.Индивидуальные задания …………………………………………….....………...24

Ответы ………………………………………………………………………………………….25

Список Литературы …….…………………………………………………………………….26

Введение

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать. Одним из этих видов являются иррациональные уравнения.

Иррациональные уравнения

Уравнение, содержащее неизвестное (либо рациональное алгебраическое выражение от неизвестного) под знаком радикала, называют иррациональным уравнением . В элементарной математике решения иррациональных уравнений отыскивается в множестве действительных чисел.

Всякое иррациональное уравнение с помощью элементарных алгебраических операций (умножение, деление, возведение в целую степень обеих частей уравнения) может быть сведено к рациональному алгебраическому уравнению. При этом следует иметь в виду, что полученное рациональное алгебраическое уравнение может оказаться неэквивалентным исходному иррациональному уравнению, а именно может содержать "лишние" корни, которые не будут корнями исходного иррационального уравнения. Поэтому, найдя корни полученного рационального алгебраического уравнения, необходимо проверить, а будут ли все корни рационального уравнения корнями иррационального уравнения.

В общем случае трудно указать какой-либо универсальный метод решения любого иррационального уравнения, так как желательно, чтобы в результате преобразований исходного иррационального уравнения получилось не просто какое-то рациональное алгебраическое уравнение, среди корней которого будут и корни данного иррационального уравнения, а рациональное алгебраическое уравнение образованное из многочленов как можно меньшей степени. Желание получить то рациональное алгебраическое уравнение, образованное из многочленов как можно меньшей степени, вполне естественно, так как нахождение всех корней рационального алгебраического уравнения само по себе может оказаться довольно трудной задачей, решить которую полностью мы можем лишь в весьма ограниченном числе случаев.

Виды иррациональных уравнений

Решение иррациональных уравнений четной степени всегда вызывает больше проблем, чем решение иррациональных уравнений нечетной степени. При решении иррациональных уравнений нечетной степени изменение ОДЗ не происходит. Поэтому ниже будут рассматриваться иррациональные уравнения, степень которых является четной. Существует два вида иррациональных уравнений:

2..

Рассмотрим первый из них.

ОДЗ уравнения: f(x) ≥ 0. В ОДЗ левая часть уравнения всегда неотрицательна – поэтому решение может существовать только тогда, когда g(x) ≥ 0. В этом случае обе части уравнения неотрицательны, и возведение в степень 2 n дает равносильное уравнение. Мы получаем, что

Обратим внимание на то, что при этомОДЗ выполняется автоматически, и его можно не писать, а условие g(x) ≥ 0 необходимо проверять.

Примечание: Это очень важное условие равносильности. Во-первых, оно освобождает учащегося от необходимости исследовать, а после нахождения решений проверять условие f(x) ≥ 0 – неотрицательности подкоренного выражения. Во-вторых, акцентирует внимание на проверке условия g(x) ≥ 0 – неотрицательности правой части. Ведь после возведения в квадрат решается уравнение т. е. решаются сразу два уравнения (но на разных промежутках числовой оси!):

1. - там, где g(x) ≥ 0 и

2. - там, где g(x) ≤ 0.

Между тем многие, по школьной привычке находить ОДЗ, поступают при решении таких уравнений ровно наоборот:

а) проверяют, после нахождения решений, условие f(x) ≥ 0 (которое автоматически выполнено), делают при этом арифметические ошибки и получают неверный результат;

б) игнорируют условие g(x) ≥ 0 - и опять ответ может оказаться неверным.

Примечание: Условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решение тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия g(x) ≥ 0 не всегда просто сделать.

Рассмотрим второй вид иррациональных уравнений.

. Пусть задано уравнение . Его ОДЗ:

В ОДЗ обе части неотрицательны, и возведение в квадрат дает равносильное уравнение f(x) = g(x). Поэтому в ОДЗ или

При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую.

Раздел 1. Методы решения иррациональных уравнений

1 метод. Освобождение от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень

Наиболее часто применяемым методом решения иррациональных уравнений является метод освобождения от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень. При этом следует иметь в виду, что при возведении обеих частей уравнения в нечетную степень полученное уравнение, эквивалентное исходному, а при возведении обеих частей уравнения в четную степень полученное уравнение будет, вообще говоря, неэквивалентным исходному уравнению. В этом легко убедиться, возведя обе части уравнения в любую четную степень. В результате этой операции получается уравнение , множество решений которого представляет собой объединение множеств решений: https://pandia.ru/text/78/021/images/image013_50.gif" width="95" height="21 src=">. Однако, несмотря на этот недостаток, именно процедура возведения обеих частей уравнения в некоторую (часто четную) степень является самой распространенной процедурой сведения иррационального уравнения к рациональному уравнению.

Решить уравнение:

Где - некоторые многочлены. В силу определения операции извлечения корня в множестве действительных чисел допустимые значения неизвестного https://pandia.ru/text/78/021/images/image017_32.gif" width="123 height=21" height="21">..gif" width="243" height="28 src=">.

Так как обе части 1 уравнения возводились в квадрат, может оказаться, что не все корни 2 уравнения будет являться решениями исходного уравнения, необходима проверка корней.

Решить уравнение:

https://pandia.ru/text/78/021/images/image021_21.gif" width="137" height="25">

Возводя обе части уравнения в куб, получим

Учитывая, что https://pandia.ru/text/78/021/images/image024_19.gif" width="195" height="27">(Последнее уравнение может иметь корни, которые, вообще говоря, не являются корнями уравнения ).

Возводим обе части этого уравнения в куб: . Перепишем уравнение в виде х3 – х2 = 0 ↔ х1 = 0, х2 = 1. проверкой устанавливаем, что х1 = 0 – посторонний корень уравнения (-2 ≠ 1), а х2 = 1 удовлетворяет исходному уравнению.

Ответ: х = 1.

2 метод. Замена смежной системой условий

При решении иррациональных уравнений, содержащих радикалы четного порядка, в ответах могут появится посторонние корни, выявить которые не всегда просто. Чтобы легче было выявить и отбросить посторонние корни, в ходе решений иррациональных уравнений его сразу же заменяют смежной системой условий. Дополнительные неравенства в системе фактически учитывают ОДЗ решаемого уравнения. Можно находить ОДЗ отдельно и учитывать его позднее, однако предпочтительнее применять именно смешанные системы условий: меньше опасность что-то забыть, не учесть в процессе решения уравнения. Поэтому в некоторых случаях рациональнее использовать способ перехода к смешанным системам.

Решить уравнение:

Ответ: https://pandia.ru/text/78/021/images/image029_13.gif" width="109 height=27" height="27">

Данное уравнение равносильно системе

Ответ: уравнение решений не имеет.

3 метод. Использование свойств корня n-ой степени

При решении иррациональных уравнений используются свойства корня n-ой степени. Арифметическим корнем n- й степени из числа а называют неотрицательное число, n- я степень числа которого равна а . Если n – четное(2n ), то а ≥ 0, в противном случае корень не существует. Если n – нечетное(2 n+1 ), то а – любое и = - ..gif" width="45" height="19"> Тогда:

2.

3.

4.

5.

Применяя любую из этих формул, формально (без учета указанных ограничений), следует иметь ввиду, что ОДЗ левой и правой частей каждой из них могут быть различными. Например, выражение определено при f ≥ 0 и g ≥ 0 , а выражение - как при f ≥ 0 и g ≥ 0 , так и при f ≤ 0 и g ≤ 0.

Для каждой из формул 1-5 (без учета указанных ограничений) ОДЗ правой ее части может быть шире ОДЗ левой. Отсюда следует, что преобразования уравнения с формальным использованием формул 1-5 «слева - направо» (как они написаны) приводят к уравнению, являющемуся следствием исходного. В этом случае могут появится посторонние корни исходного уравнения, поэтому обязательным этапом в решении исходного уравнения является проверка.

Преобразования уравнений с формальным использованием формул 1-5 «справа – налево» недопустимы, так как возможно суждение ОДЗ исходного уравнения, а следовательно, и потеря корней.

https://pandia.ru/text/78/021/images/image041_8.gif" width="247" height="61 src=">,

являющееся следствием исходного. Решение этого уравнения сводится к решению совокупности уравнений .

Из первого уравнения этой совокупности находим https://pandia.ru/text/78/021/images/image044_7.gif" width="89" height="27"> откуда находим . Таким образом корнями данного уравнения могут быть только числа (-1) и (-2). Проверка показывает, что оба найденных корня удовлетворяют данному уравнению.

Ответ: -1,-2.

Решите уравнение: .

Решение: на основании тождеств первое слагаемое заменить на . Заметить, что как сумма двух неотрицательных чисел левой части. «Снять» модуль и после приведения подобных членов решить уравнение. Так как , то получаем уравнение . Так как и , то и https://pandia.ru/text/78/021/images/image055_6.gif" width="89" height="27 src=">.gif" width="39" height="19 src=">.gif" width="145" height="21 src=">

Ответ: х = 4,25.

4 метод. Введения новых переменных

Другим примером решения иррациональных уравнений является способ введения новых переменных, относительно которых получается либо более простое иррациональное уравнение, либо рациональное уравнение.

Решение иррациональных уравнений путем замены уравнения его следствием (с последующей проверкой корней) можно проводить следующим образом:

1. Найти ОДЗ исходного уравнения.

2. Перейти от уравнения к его следствию.

3. Найти корни полученного уравнения.

4. Проверить, являются ли найденные корни корнями исходного уравнения.

Проверка состоит в следующем:

А) проверяется принадлежность каждого найденного корня ОДЗ исходного уравнения. Те корни, которые не принадлежат ОДЗ, являются посторонними для исходного уравнения.

Б) для каждого корня, входящего в ОДЗ исходного уравнения, проверяется, имеют ли одинаковые знаки левая и правая части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень. Те корни, для которых части какого-либо возводимого в четную степень уравнения имеют разные знаки, являются посторонними для исходного уравнения.

В) только те корни, которые принадлежат ОДЗ исходного уравнения и для которых обе части каждого из уравнений, возникающих в процессе решения исходного уравнения и возводимых в четную степень, имеют одинаковые знаки, проверяются непосредственной подстановкой в исходное уравнение.

Такой метод решения с указанным способом проверки позволяет избежать громоздких вычислений в случае непосредственной подстановки каждого из найденных корней последнего уравнения в исходное.

Решить иррациональное уравнение:

.

Множество допустимых значений этого уравнения:

Положив , после подстановки получим уравнение

или эквивалентное ему уравнение

которое можно рассматривать как квадратное уравнение относительно. Решая это уравнение, получим

.

Следовательно, множество решений исходного иррационального уравнения представляет собой объединение множеств решений следующих двух уравнений:

, .

Возведя обе части каждого из этих уравнений в куб, получим два рациональных алгебраических уравнения:

, .

Решая эти уравнения, находим, что данное иррациональное уравнение имеет единственный корень х = 2 (проверка не требуется, так как все преобразования равносильны).

Ответ: х = 2.

Решить иррациональное уравнение:

Обозначим 2x2 + 5x – 2 = t. Тогда исходное уравнение примет вид . Возведя обе части полученного уравнения в квадрат и приведя подобные члены, получим уравнение , являющееся следствием предыдущего. Из него находим t = 16 .

Возвращаясь к неизвестному х, получим уравнение 2x2 + 5x – 2 = 16, являющееся следствием исходного. Проверкой убеждаемся, что его корни х1 = 2 и х2 = - 9/2 являются корнями исходного уравнения.

Ответ: х1 = 2, х2 = -9/2.

5 метод. Тождественное преобразование уравнения

При решении иррациональных уравнений не следует начинать решение уравнение с возведения обеих частей уравнений в натуральную степень, пытаясь свести решение иррационального уравнения к решению рационального алгебраического уравнения. Сначала необходимо посмотреть, нельзя ли сделать какое-нибудь тождественное преобразование уравнения, которое может существенно упростить его решение.

Решить уравнение:

Множество допустимых значений данного уравнения:https://pandia.ru/text/78/021/images/image074_1.gif" width="292" height="45"> Разделим данное уравнение на .

.

Получим:

При а =0 уравнение решений иметь не будет; при уравнение может быть записано в виде

при данное уравнение решений не имеет, так как при любом х , принадлежащем множеству допустимых значений уравнения, выражение, стоящее в левой части уравнения, положительно;

при уравнение имеет решение

Принимая во внимание, что множество допустимых решений уравнения определяется условием , получаем окончательно:

При решением этого иррационального уравнения будет https://pandia.ru/text/78/021/images/image084_2.gif" width="60" height="19"> решением уравнения будет . При всех остальных значениях х уравнение решений не имеет.

ПРИМЕР 10:

Решить иррациональное уравнение: https://pandia.ru/text/78/021/images/image086_2.gif" width="381" height="51">

Решение квадратного уравнения системы дает два корня: х1 = 1 и х2 = 4. первый из полученных корней не удовлетворяет неравенству системы, поэтому х = 4.

Примечания.

1) Проведение тождественных преобразований позволяет обходиться без проверки.

2) Неравенство х – 3 ≥0 относится к тождественным преобразованиям, а не к области определения уравнения.

3) В левой части уравнения стоит убывающая функция, а в правой части этого уравнения расположена возрастающая функция. Графики убывающей и возрастающей функций в пересечении их областей определения могут иметь не больше одной общей точки. Очевидно, что в нашем случае х = 4 является абсциссой точки пересечения графиков.

Ответ: х = 4.

6 метод. Использование области определения функций при решении уравнений

Этот метод наиболее результативен при решении уравнений, в состав которых входят функции https://pandia.ru/text/78/021/images/image088_2.gif" width="36" height="21 src="> и найти ее область определения (f) ..gif" width="53" height="21">.gif" width="88" height="21 src=">, то нужно проверить верно ли уравнение на концах промежутка, причем, если а < 0, а b > 0, то необходима проверка на промежутках (а;0) и . Наименьшее целое число в Е(у) равно 3.

Ответ : х = 3.

8 метод. Применение производной при решении иррациональных уравнений

Чаще всего при решении уравнений с помощью метода применения производной используется метод оценки.

ПРИМЕР 15:

Решите уравнение: (1)

Решение: Так как https://pandia.ru/text/78/021/images/image122_1.gif" width="371" height="29">, или (2). Рассмотрим функцию ..gif" width="400" height="23 src=">.gif" width="215" height="49"> при всех и, следовательно, возрастает. Поэтому уравнение равносильно уравнению , имеющему корень , являющимся корнем исходного уравнения.

Ответ:

ПРИМЕР 16:

Решить иррациональное уравнение:

Область определения функции есть отрезок . Найдем наибольшее и наименьшее значение значения этой функции на отрезке . Для этого найдем производную функции f(x) : https://pandia.ru/text/78/021/images/image136_1.gif" width="37 height=19" height="19">. Найдем значения функции f(x) на концах отрезка и в точке : Значит, Но и, следовательно, равенство возможно лишь при условииhttps://pandia.ru/text/78/021/images/image136_1.gif" width="37" height="19 src=">. Проверка показывает, что число 3 – корень данного уравнения.

Ответ: х = 3.

9 метод. Функциональный

На экзаменах иногда предлагают решить уравнения, которые можно записать в виде , где - это некоторая функция.

Например, некоторые уравнения: 1) 2) . Действительно, в первом случае , во втором случае . Поэтому решать иррациональные уравнения с помощью следующего утверждения: если функция строго возрастает на множестве Х и для любого , то уравнения и т. д. равносильны на множестве Х .

Решить иррациональное уравнение: https://pandia.ru/text/78/021/images/image145_1.gif" width="103" height="25"> строго возрастает на множестве R, и https://pandia.ru/text/78/021/images/image153_1.gif" width="45" height="24 src=">..gif" width="104" height="24 src="> которое имеет единственный корень Следовательно, и равносильное ему уравнение (1) также имеет единственный корень

Ответ: х = 3.

ПРИМЕР 18:

Решить иррациональное уравнение: (1)

В силу определения квадратного корня получаем, что если уравнение (1) имеет корни, то они принадлежат множеству https://pandia.ru/text/78/021/images/image159_0.gif" width="163" height="47">. (2)

Рассмотрим функцию https://pandia.ru/text/78/021/images/image147_1.gif" width="35" height="21"> строго возрастает на этом множестве для любого ..gif" width="100" height="41"> которое имеет единственный корень Следовательно, и равносильное ему на множестве Х уравнение (1) имеет единственный корень

Ответ: https://pandia.ru/text/78/021/images/image165_0.gif" width="145" height="27 src=">

Решение: Данное уравнение равносильно смешанной системе

Изучая алгебру, школьники сталкиваются с уравнениями многих видов. Среди тех из них, которые наиболее простые, можно назвать линейные, содержащие одну неизвестную. Если переменная в математическом выражении возводится в определенную степень, то уравнение называют квадратным, кубическим, биквадратным и так далее. Указанные выражения могут содержать рациональные числа. Но существуют также уравнения иррациональные. От прочих они отличаются наличием функции, где неизвестное находится под знаком радикала (то есть чисто внешне переменную здесь можно увидеть написанной под квадратным корнем). Решение иррациональных уравнений имеет свои характерные особенности. При вычислении значения переменной для получения правильного ответа их следует обязательно учитывать.

«Невыразимые словами»

Не секрет, что древние математики оперировали в основном рациональными числами. К таковым относятся, как известно, целые, выражаемые через обыкновенные и десятичные периодические дроби представители данного сообщества. Однако ученые Среднего и Ближнего Востока, а также Индии, развивая тригонометрию, астрономию и алгебру, иррациональные уравнения тоже учились решать. К примеру, греки знали подобные величины, но, облекая их в словесную форму, употребляли понятие «алогос», что означало «невыразимые». Несколько позднее европейцы, подражая им, называли подобные числа «глухими». От всех остальных они отличаются тем, что могут быть представлены только в форме бесконечной непериодической дроби, окончательное числовое выражение которой получить просто невозможно. Поэтому чаще подобные представители царства чисел записываются в виде цифр и знаков как некоторое выражение, находящееся под корнем второй или большей степени.

На основании вышесказанного попробуем дать определение иррациональному уравнению. Подобные выражения содержат так называемые «невыразимые числа», записанные с использованием знака квадратного корня. Они могут представлять собой всевозможные довольно сложные варианты, но в своей наипростейшей форме имеют такой вид, как на фото ниже.

Преступая к решению иррациональных уравнений, перво-наперво необходимо вычислить область допустимых значений переменной.

Имеет ли смысл выражение?

Необходимость проверки полученных значений вытекает из свойств Как известно, подобное выражение приемлемо и имеет какой-либо смысл лишь при определенных условиях. В случаях корня четной степени все подкоренные выражения должны быть положительными или равняться нулю. Если данное условие не выполняется, то представленная математическая запись не может считаться осмысленной.

Приведем конкретный пример, как решать иррациональные уравнения (на фото ниже).

В данном случае очевидно, что указанные условия ни при каких значениях, принимаемых искомой величиной, выполняться не могут, так как получается, что 11 ≤ x ≤ 4. А значит, решением может являться только Ø.

Метод анализа

Из вышеописанного становится понятно, как решать иррациональные уравнение некоторых типов. Здесь действенным способом может оказаться простой анализ.

Приведем ряд примеров, которые снова наглядно это продемонстрируют (на фото ниже).

В первом случае при внимательном рассмотрении выражения сразу оказывается предельно ясно, что истинным оно быть не может. Действительно, ведь в левой части равенства должно получаться положительное число, которое никак не способно оказаться равным -1.

Во втором случае сумма двух положительных выражений может считаться равной нулю, лишь только когда х - 3 = 0 и х + 3 = 0 одновременно. А подобное опять невозможно. И значит, в ответе снова следует писать Ø.

Третий пример очень похож на уже рассмотренный ранее. Действительно, ведь здесь условия ОДЗ требуют, чтобы выполнялось следующее абсурдное неравенство: 5 ≤ х ≤ 2. А подобное уравнение аналогичным образом никак не может иметь здравых решений.

Неограниченное приближение

Природа иррационального наиболее ясно и полно может быть объяснена и познана только через нескончаемый ряд чисел десятичной дроби. А конкретным, ярким примером из членов этого семейства является πи. Не без оснований предполагается, что эта математическая константа была известна с древних времен, используясь при вычислении длин окружности и площади круга. Но среди европейцев ее впервые применили на практике англичанин Уильям Джонс и швейцарец Леонард Эйлер.

Возникает эта константа следующим образом. Если сравнивать самые разные по длине окружности, то отношение их длин и диаметров в обязательном порядке равны одному и тому же числу. Это и есть πи. Если выразить его через обыкновенную дробь, то приблизительно получим 22/7. Впервые это сделал великий Архимед, портрет которого представлен на рисунке выше. Именно поэтому подобное число получило его имя. Но это не явное, а приближенное значение едва ли не самого удивительного из чисел. Гениальный ученый с точностью до 0,02 нашел искомую величину, но, по сути, данная константа не имеет реального значения, а выражается как 3,1415926535… Она представляет собой бесконечный ряд цифр, неограниченно приближаясь к некоему мифическому значению.

Возведение в квадрат

Но вернемся к иррациональным уравнениям. Чтобы отыскать неизвестное, в данном случае очень часто прибегают к простому методу: возводят обе части имеющегося равенства в квадрат. Подобный способ обычно дает хорошие результаты. Но следует учитывать коварство иррациональных величин. Все полученные в результате этого корни необходимо проверять, ведь они могут не подойти.

Но продолжим рассмотрение примеров и постараемся найти переменные вновь предложенным способом.

Совсем несложно, применив теорему Виета, найти искомые значения величин после того, как в результате определенных оперций у нас образовалось квадратное уравнение. Здесь получается, что среди корней будут 2 и -19. Однако при проверке, подставив полученные значение в изначальное выражение, можно убедиться, что ни один из этих корней не подходит. Это частое явление в иррациональных уравнениях. Значит, наша дилемма вновь не имеет решений, а в ответе следует указать пустое множество.

Примеры посложней

В некоторых случаях требуется возводить в квадрат обе части выражения не один, а несколько раз. Рассмотрим примеры, где требуется указанное. Их можно увидеть ниже.

Получив корни, не забываем их проверять, ведь могут возникнуть лишние. Следует пояснить, почему такое возможно. При применении подобного метода происходит в некотором роде рационализация уравнения. Но избавляясь от неугодных нам корней, которые мешают производить арифметические действия, мы как бы расширяем существующую область значений, что чревато (как можно понять) последствиями. Предвидя подобное, мы и производим проверку. В данном случае есть шанс убедиться, что подходит только один из корней: х = 0.

Системы

Что же делать в случаях, когда требуется осуществить решение систем иррациональных уравнений, и у нас в наличии не одно, а целых два неизвестных? Здесь поступаем так же, как в обычных случаях, но с учетом вышеперечисленных свойств данных математических выражений. И в каждой новой задаче, разумеется, следует применять творческий подход. Но, опять же, лучше рассмотреть все на конкретном примере, представленном ниже. Здесь не просто требуется найти переменные х и у, но и указать в ответе их сумму. Итак, имеется система, содержащая иррациональные величины (см. фото ниже).

Как можно убедиться, подобная задача не представляет ничего сверхъестественно сложного. Требуется лишь проявить сообразительность и догадаться, что левая часть первого уравнения представляет собой квадрат суммы. Подобные задания встречаются в ЕГЭ.

Иррациональное в математике

Каждый раз потребность в создании новых видов чисел возникала у человечества тогда, когда ему не хватало «простора» для решения каких-то уравнений. Иррациональные числа не являются исключением. Как свидетельствуют факты из истории, впервые великие мудрецы обратили на это внимание еще до нашей эры, веке в VII. Сделал это математик из Индии, известный под именем Манава. Он отчетливо понимал, что из некоторых натуральных чисел невозможно извлечь корень. К примеру, к таковым относятся 2; 17 или 61, а также многие другие.

Один из пифагорейцев, мыслитель по имени Гиппас, пришел к тому же выводу, пытаясь производить вычисления с числовыми выражениями сторон пентаграммы. Открыв математические элементы, которые не могут быть выражены цифровыми значениями и не обладают свойствами обычных чисел, он настолько разозлил своих коллег, что был выброшен за борт корабля, в море. Дело в том, что другие пифагорейцы сочли его рассуждения бунтом против законов вселенной.

Знак радикала: эволюция

Знак корня для выражения числового значения «глухих» чисел стал использоваться при решении иррациональных неравенств и уравнений далеко не сразу. Впервые о радикале начали задумываться европейские, в частности итальянские, математики приблизительно в XIII веке. Тогда же для обозначения придумали задействовать латинскую R. Но немецкие математики в своих работах поступали иначе. Им больше понравилась буква V. В германии вскоре распространилось обозначение V(2), V(3), что призвано было выражать корень квадратный из 2, 3 и так далее. Позднее в дело вмешались нидерландцы и видоизменили знак радикала. А завершил эволюцию Рене Декарт, доведя знак квадратного корня до современного совершенства.

Избавление от иррационального

Иррациональные уравнения и неравенства могут включать в себя переменную не только под знаком квадратного корня. Он может быть любой степени. Самым распространенным способом от него избавиться является возможность возвести обе части равенства в соответствующую степень. Это основное действие, помогающее при операциях с иррациональным. Действия в четных случаях особенно не отличаются от тех, которые были уже разобраны нами ранее. Здесь должны быть учтены условия неотрицательности подкоренного выражения, а также по окончании решения необходимо производить отсев посторонних значений переменных таким образом, как было показано в рассмотренных уже примерах.

Из дополнительных преобразований, помогающих найти правильный ответ, часто используется умножение выражения на сопряженное, а также нередко требуется введение новой переменной, что облегчает решение. В некоторых случаях, чтобы отыскать значение неизвестных, целесообразно применять графики.