Структурная химия. Краткий очерк истории химии Период ятрохимии - многообещающее начало развития

Изучает состав, строение, свойства и применение органических соединений.

У всех органических соединений есть одно общее свойство: они обязательно содержат атомы углерода. Кроме углерода, в состав молекул органических соединений входят водород, кислород, азот, реже - сера, фосфор, галогены.

В настоящее время известно более двадцати миллионов органических соединений. Это многообразие возможно благодаря уникальным свойствам углерода, атомы которого способны образовывать прочные химические связи как друг с другом, так и с другими атомами.

Резкой границы между неорганическими и органическими соединениями не существует. Некоторые соединения углерода, такие, как оксиды углерода, соли угольной кислоты, по характеру свойств относят к неорганическим.

Простейшими по составу органическими соединениями являются углеводороды, содержащие только атомы углерода и водорода. Другие органические соединения можно рассматривать как производные углеводородов.

Это наука, изучающая углеводороды и их производные.

Различают органические соединения природного происхождения (крахмал, целлюлоза, природный газ, нефть и др.) и синтетические (получающиеся в результате синтеза в лабораториях и на заводах).

К органическим соединениям природного происхождения относятся также вещества, образующиеся в живых организмах. Это, например, нуклеиновые кислоты, белки, жиры, углеводы, ферменты, витамины, гормоны. Строение и свойства этих веществ, их биологические функции изучают биохимия, молекулярная биология и биоорганическая химия .

Подавляющее большинство лекарственных препаратов представляют собой органические соединения. Созданием лекарств и изучением их действия на организм занимается химия лекарственных веществ.

Большое число синтетических органических соединений получают в результате переработки нефти (рисунок ниже), природного газа, угля и древесины.

1 — сырьё для химической промышленности; 2 — асфальт; 3 — масла; 4 — топливо для самолетов; 5 — смазочные материалы; 6 — дизельное топливо; 7 — бензин

Достижения органической химии используются в производстве строительных материалов, в машиностроении и сельском хозяйстве, медицине, электротехнической и полупроводниковой промышленности. Без синтетического топлива, синтетических моющих средств, полимеров и пластмасс, красителей и т. д. невозможно представить современную жизнь.

Воздействие получаемых человеком органических веществ на живые организмы и другие объекты природы различно. Использование некоторых органических соединений в ряде случаев приводит к серьезным экологическим проблемам. Например, ранее применявшийся для борьбы с вредными насекомыми хлорсодер-жащий инсектицид ДДТ из-за накапливания в живых организмах и медленного разложения в природных условиях в настоящее время запрещен для использования.

Предполагается, что фторхлоруглеводороды (фреоны) (например, дифтор-дихлорметан CF 2 Cl 2) способствуют разрушению озонового слоя атмосферы, защищающего нашу планету от жесткого ультрафиолетового излучения Солнца. По этой причине фреоны заменяются на менее опасные насыщенные углеводороды.

Вам необходимо включить JavaScript, чтобы проголосовать

Органическая химия – это химия углеводородов и их производных.

Углеводороды (УВ) – это простейшие органические вещества, молекулы которых состоят из атомов только двух элементов: С и Н. Например: СН 4 , С 2 Н 6 , С 6 Н 6 и т.д.

Производные УВ – это продукты замещения атомов «Н» в молекулах УВ на другие или группы атомов. Например:

Название «органическая химия» появилось в начале XIX в., когда было установлено, что углеродсодержащие вещества являются основой растительных и животных организмов.

До 20-х годов XIX в. многие ученые считали, что органические вещества нельзя получить в лаборатории из неорганических веществ, что они образуются только в живой природе при участии особой «жизненной силы». Учение о «жизненной силе» называется витализмом .


А.М. Бутлеров

Это учение просуществовало недолго, потому что уже в начале и середине XIX в. были синтезированы многие органические вещества:

1828 г. – Велер синтезирует мочевину CO(NH 2) 2 , которая является одним из продуктов, образующихся в организме;

1850-е гг. – Бертло синтезирует жиры;

1861 г. – Бутлеров синтезировал один из углеводов.

Сейчас известно более 10 млн органических веществ; многие из них не существуют в природе, а получены в лаборатории. Промышленный синтез различных органических веществ является одним из основных направлений химической промышленности.

Принципиального различия между органическими и неорганическими веществами нет. Однако типичные органические вещества имеют ряд свойств, которые отличают их от типичных неорганических веществ. Это объясняется различием в характере химической связи:

Основные положения теории химического строения органических соединений

Эту теорию разработал русский ученый А.М. Бутлеров (1858 – 1861).

I положение . Атомы в молекулах органических веществ соединяются друг с другом в определенной последовательности согласно их валентности.

Последовательность соединения атомов в молекуле называется химическим строением (структурой).

В органических соединениях атомы углерода могут соединяться друг с другом, образуя цепи (углеродный скелет). В зависимости от наличия тех или иных атомов углерода цепи бывают:

а) прямые (неразветвленные) – содержат два первичных атома (крайние в цепи), остальные атомы – вторичные; например:

б) разветвленные – содержат хотя бы один третичный или хотя бы один четвертичный атом углерода; например:

в) замкнутые (циклы) – не содержат первичных атомов углерода; например:

II положение . Свойства веществ зависят не только от состава, но и от строения их молекул.

Например, существуют 2 различных вещества, которые имеют одинаковый состав, выражаемый эмпирической формулой С 2 Н 6 О:

Изомеры – это вещества, которые имеют одинаковый состав, но разное строение молекул и различные свойства.

Изомерия – явление существования изомеров.

Изомеры имеют одинаковую эмпирическую формулу и разные структурные формулы. С увеличением числа атомов углерода в молекуле число изомеров резко возрастает; например:

С 4 Н 10 – 2 изомера,

С 10 Н 22 – 75 изомеров.

Типы изомерии

1. Структурная изомерия

2. Пространственная изомерия (геометрическая изомерия, цис-транс-изомерия)

Порядок соединения атомов в этих изомерах одинаковый, но расположение атомов в пространстве различно.

3. Межклассовая изомерия – изомерия веществ, принадлежащих к разным классам органических соединений:

III положение. В молекулах органических веществ атомы и группы атомов влияют друг на друга. Это взаимное влияние определяет свойства веществ.

Рассмотрим, например, влияние ОН-группы на подвижность атомов «Н» в цикле бензола:

В бензольном ядре замещается один атом .

При наличии группы – ОН в бензольном ядре замещаются три атома водорода.

С другой стороны, углеводородный радикал влияет на подвижность атома водорода в ОН-группе:

Если группа – ОН связана с бензольным кольцом, атом водорода в ней является подвижным и может замещаться на атом при взаимодействии со .

Если группа – ОН связана с алкильным радикалом, подвижность атома водорода в ней невелика, и он не может замещаться на металл при действии щелочи.

Гомологический ряд. Гомологи

Гомологический ряд – это ряд органических соединений, в котором каждый следующий член ряда отличается от предыдущего на группу СН 2 . Сходные по химическим свойствам соединения, образующие гомологический ряд, называются гомологами . Группа СН 2 называется гомологической разностью .

Например: СН 4 , С 2 Н 6 , С 3 Н 8 , С 4 Н 10 …CnH 2 n+ 2 .

Состав всех членов гомологического ряда может быть выражен общей формулой.

Классификация органических веществ

Большинство органических соединений можно представить формулой: R – X, где R – углеводородный радикал; Х – функциональная группа.

Функциональные группы – это группы атомов, которые определяют наиболее характерные химические свойства органических соединений. Углеводородные радикалы – остатки УВ, связанные с функциональными группами.

1. Классификация органических веществ по строению углеводородного радикала (R)

2. Классификация органических веществ по функциональным группам (Х)

Типы органических реакций

1. Реакции присоединения

2. Реакции замещения

3. Реакции отщепления

4. Реакции разложения

5. Реакции изомеризации

6. Реакции окисления

ОРГАНИЧЕСКАЯ ХИМИЯ - раздел химии, естественнонаучная дисциплина, предметом изучения к-рой являются органические соединения, т. е. соединения углерода с другими элементами, а также законы превращения этих веществ; иногда органическую химию определяют как химию углеводородов и их производных.

Влияние О. х. на развитие биологии и медицины очень велико. Все живое построено в основном из органических соединений (см.), и обмен веществ, лежащий в основе жизненных процессов, представляет собой превращения гл. обр. органических соединений. О. х. лежит в основе биохимии (см.) - науки, являющейся одной из естественнонаучных основ медицины. Большинство лекарственных веществ представляет собой органические соединения; поэтому О. х. наряду с физиологией и биохимией является основой фармакологии (см.). Методы О. х. сыграли важную роль в установлении строения нуклеиновых к-т, многих белков и других сложных природных соединении; с их помощью были раскрыты механизмы и регуляция синтеза белков. Благодаря возросшим возможностям органического синтеза были искусственно получены такие сложные природные вещества, как полинуклеотиды с заданным чередованием нуклеотидных звеньев, цианокобаламин и др.

Успехом органич. химии, имеющим принципиальное значение, явилась разработка методов синтеза многих биологически активных полипептидов, в т. ч. ферментов и нек-рых гормонов или их фармакологически активных аналогов, а также многих лекарственных средств.

Кроме того, большое значение приобрели методы О. х. в совр, технологии производства каучуков, пластмасс, синтетических красителей, пестицидов, гербицидов, стимуляторов роста растений.

О. х. изучает тонкое строение органических веществ: порядок соединения атомов в их молекулах, взаимное пространственное расположение атомов в молекулах органических соединений, электронное строение атомов и их связей в органических соединениях. Кроме того, предметом О. х. является изучение органических реакций, в т. ч. их кинетики (см. Кинетика биологических процессов), энергетики и электронных механизмов, а также разработка новых методов синтеза органических веществ в лабораторных и производственных условиях.

Разделы О. х. посвящены изучению отдельных групп органических веществ в соответствии с их классификацией, напр, химия углеводородов, химия аминокислот и т. д., или общетеоретическим вопросам, напр, стереоизомерия органических соединений, механизмы органических реакций, а также практически важным аспектам О. х., напр, химия красителей, химия органических лекарственных средств и т. д.

Органические соединения и нек-рые их свойства были известны людям с древних времен; уже тогда знали о спиртовом и уксусном брожении, крашении индиго и ализарином и т. п.

Начиная с 16 века - периода ятрохимии (см.)- исследования были направлены в основном на выделение и использование различных органических лекарственных веществ: из растений были выделены эфирные масла, приготовлен диэтиловый эфир, сухой перегонкой древесины получены метиловый (древесный) спирт и уксусная к-та, перегонкой янтаря - янтарная к-та. Однако возникновение О. х. как самостоятельной научной дисциплины относится лишь к 19 в. Впервые понятие «органическая химия» было использовано И. Берцелиусом, к-рый называл так химию веществ, образующихся в организме животных и растений. Важными этапами становления О. х. было осуществление первых хим. синтезов органических веществ - щавелевой к-ты и мочевины, показавшее возможность получения органических соединений вне живого организма, без участия «жизненной силы» (см. Витализм). Эти синтезы, а также работы Ю. Либиха, доказавшего, что во всех образующихся в живом организме (органических) веществах содержится углерод, способствовали появлению определения О. х. как химии соединений углерода, предложенного Л. Гмелином. С первой четверти 19 в. начались попытки обобщить фактический материал, имеющийся в распоряжении О. х., в виде тех или иных теорий. Первой такой теорией можно считать теорию радикалов, сформулированную Ж. Гей-Люссаком, согласно к-рой молекулы органических веществ состоят из групп атомов - радикалов, постоянных и неизменных и способных переходить из одного соединения в другое. Такие радикалы, по мнению Ж. Гей-Люссака, могут длительное время существовать в свободном состоянии, а в молекуле они удерживаются благодаря своим разноименным зарядам. Представление о радикалах как группах атомов, способных переходить из одной молекулы в другую, сохранилось и поныне. Однако все остальные положения этой теории оказались ошибочными.

Вслед за теорией радикалов появилась теория типов Жерара (F. Gerard) и Лорана (A. Laurent). По этой теории все органические вещества представляют собой соединения, образованные путем замены определенных атомов в молекуле нек-рых неорганических веществ (напр., воды, аммиака и др.) на органические остатки. Т. о. могут быть получены органические соединения, относящиеся к типам воды (спирты, простые эфиры), типам аммиака (первичные, вторичные и третичные амины) и т. д. Теория типов в свое время сыграла положительную роль, т. к. она позволила создать первую классификацию органических веществ, нек-рые элементы к-рой сохранились и в позднейших классификациях. Однако по мере накопления фактов и знакомства с более сложными веществами теория типов все чаще оказывалась несостоятельной.

Важным этапом в развитии О. х. явилось создание теории строения органических соединений. Одной из предпосылок создания этой теории было установление Кекуле (F. A. Kekule) в 1857 г. постоянной четырехвалентности углерода и открытие Купером (A. Cooper) в 1858 г. способности атомов углерода соединяться друг с другом, образуя цепи. Создателем теории строения органических соединений явился А. М. Бутлеров (1861). Основные положения этой теории заключаются в следующем. Все атомы, образующие молекулу органического вещества, связаны в определенной последовательности; они могут быть связаны одинарной -С-С-, двойной >С=С< или тройной -С-С- связью. От строения молекул, т. е. от порядка соединения атомов и характера связей между ними, зависят свойства вещества; этими положениями объяснялось непонятное ранее явление изомерии (см.). Хим. свойства каждого атома и атомной группы не неизменны, они зависят от других атомов и атомных групп, присутствующих в молекуле. Это положение теории строения органических соединений о взаимном влиянии атомов было развито учеником А. М.Бутлерова - В. В. Марковниковым. Теория А. М. Бутлерова, глубоко материалистическая, дает возможность выбрать наилучшую схему синтеза и по формуле строения, как по чертежу, синтезировать разнообразные органические вещества.

С момента создания теории строения органических соединений начинается интенсивное развитие О. х. Многие разделы О. х. становятся теоретической основой для ряда отраслей промышленности (химия топлива, химия красителей, химия лекарственных средств и т. д.).

В развитии О. х. выдающуюся роль сыграли также H. Н. Зинин, С. В. Лебедев, А. Е. Фаворский, Н. Д. Зелинский, В. М. Родионов, А. Н. Несмеянов, А. П. Орехов и многие другие. Среди зарубежных ученых в области О. х. широко известны Л. Пастер, Э. Фишер, Бертло (Р. E. М. Berthelot), А. Байер, Р. Вилъштеттер, Вудворд (R. В. Woodward) и др.

Под влиянием бурного развития физики в теории О. х. стали широко использоваться принципы квантовой, или волновой механики (см. Квантовая теория). Возникли понятия об орбиталях электрона (пространствах атома, в к-рых вероятность пребывания электрона наиболее велика). Электронные представления в О. х. дали возможность понять и классифицировать разнообразные факты взаимного влияния атомов, в основе к-рого, как выяснилось, лежит перераспределение электронной плотности. Большое внимание в О. х. уделяется изучению электронногомеханизма органических реакций. Эти реакции протекают с образованием свободных радикалов, имеющих атом с неспаренным электроном, магнитно некомпенсированным, а потому активным, или же ионов, несущих положительный или отрицательный заряд (карбокатионов и карбоанионов).

Глубокая связь О. х. с физикой и физической химией (см.) проявляется не только в изучении электронной природы хим. связей, взаимного влияния атомов и электронных механизмов реакций, но и в широкой разработке проблем кинетики и энергетики хим. реакций.

Особенностью О. х. второй половины 20 в. являются ее успехи в расшифровке строения и в синтезе таких сложнейших природных веществ, как белки (см.), нуклеиновые кислоты (см.) и др. Залогом успеха в этой области явилось установление взаимного пространственного расположения атомов в молекулах, т. е. стереохимии (см.) и конформации органических молекул (см. Конформация). Параллельно была решена задача изучения причин оптической изомерии и синтеза оптически активных соединений.

К успехам О. х. следует отнести открытие и изучение новых классов органических соединений, среди к-рых первое место занимают небензольные ароматические соединения (циклопеитадиенильный анион и металлоцены, катион тропилия, азу-лены и др.), нек-рые группы элемент-органических соединений с очень ценными в практическом отношении свойствами.

Во второй половине 20 в. продолжается дальнейшее сближение О. х. с биохимией и биологией, в результате к-рого возник новый раздел химии - биоорганическая химия.

Успехи О. х. стали возможны благодаря широкому использованию наряду с химическими ряда физических методов, к к-рым прежде всего относятся дифракционные методы (рентгенография и электронография), оптическая спектроскопия (в видимой, ультрафиолетовой и инфракрасной областях спектра), магнитная радиоспектроскопия: электронный парамагнитный резонанс (ЭПР), ядерный магнитный резонанс (ЯМР), масс-спектрометрия, определение электрических моментов диполя. Среди названных методов наиболее эффективным по информативности является ядерный магнитный резонанс (см.), в т. ч. его разновидности - протонно-магннтный резонанс и находящий все большее применение метод 13С-ЯМР. Эти методы не только во много раз ускорили расшифровку строения молекул органических соединений, но и позволили создать условия для получения их полной геометрической и энергетической характеристики, а также раскрыть электронные механизмы реакций. В органической химии используют и биохим, методы, напр, строго специфичные ферментативные методы, иммунол, методы и т. п.

С развитием естествознания появились такие новые дисциплины, как молекулярная патология и молекулярная фармакология. Все большее число болезней удается объяснить появлением в тканях измененных молекул органических веществ. Бурно развивающаяся молекулярная фармакология позволяет найти в клетках и охарактеризовать большое число рецепторов, специфически связывающих изучаемое лекарственное вещество. Изучение рецепторов на молекулярном уровне открывает перспективы для поисков новых лекарственных средств. Проникновение О. х. в биологию и медицину позволило вскрыть сущность нек-рых процессов, считавшихся ранее чисто биологическими. Так, было установлено, что наследственные признаки организмов «записаны» в молекулах ДНК в виде определенной последовательности нуклеотидов. О. х. проникла и в самую сложную сферу - в сферу изучения психической деятельности человека. Оказалось возможным одними органическими веществами вызвать у здорового человека галлюцинации, подобные галлюцинациям у психически больных, другими веществами эти галлюцинации снять. Из мозга человека и животных были выделены пептиды, обладающие действием, подобным действию морфина и его аналогов (см. Опиаты эндогенные). Возможно, что нарушение биосинтеза или рецепции этих пептидов лежит в основе патогенеза психических заболеваний, а органический синтез их устойчивых к действию пептидаз крови аналогов будет иметь огромное значение для анестезиологии, психиатрии и т. д.

По-видпмому, самые эффективные достижения следует ожидать именно в тех областях О. х., к-рые граничат с биологией и медициной. Это раскрытие хим. основ злокачественного роста п борьбы со злокачественными опухолями, расшифровка хим. основ памяти, механизма динамики развития и дифференцировки тканей, раскрытие хим. основ иммунитета и т. д. В областях О. х., пограничных с физикой и физической химией, будут продолжаться исследования по более глубокому проникновению в природу хим. связи между атомами в органической молекуле, будут более точно установлены количественные соотношения между строением и реакционной способностью таких молекул, глубже изучены механизмы реакций, в к-рые вступают органические соединения. В СССР научную работу по О. х. проводят НИИ АН СССР: Ин-т органической химии им. Н. Д. Зелинского (ИОХ), Ин-т органической и физической химии им. А. Е. Арбузова (ИОФХ), Ин-т нефтехимического синтеза им. А. В. Топчиева (ИНХС), Ин-т элементоорганических соединений (ИНЭОС), Ин-т биоорганической химии им. М. М. Шемякина, H PI И Сибирского отделения АН СССР: Новосибирский ин-т органической химии (НИОХ), Иркутский ин-т органической химии (ИНОХ), Ин-т химии нефти, а также НИИ республиканских академий - ин-ты органической химии Армянской ССР, Киргизской ССР, УССР, Ин-т тонкой органической химии им. А. Л. Мгджаяна (Арм. ССР), Ин-т физикоорганической химии (БССР), Ин-т физической и органической химии им. П. Г. Меликишвили (Груз. ССР), Ин-т органического синтеза (Латв. ССР) и др.

Национальный комитет советских химиков является членом Международного союза чистой и прикладной химии - IUPAC (International Union of Pure and Applied Chemie), к-рый организует один раз в два года конгрессы, конференции и симпозиумы, в т. ч. и по органической химии.

В связи с общей тенденцией медицины приблизиться к молекулярному уровню медик должен ясно представлять себе строение и пространственную конфигурацию молекул веществ, принимающих участие в метаболизме (нуклеиновых к-т, белков, ферментов, коферментов, углеводов, липидов и т. д.) в норме и патологии, а также строение молекул лекарственных средств.

О. х. является основой для изучения в медвузах и средних мед. учебных заведениях биохимии, фармакологии, физиологии и других дисциплин. Ей посвящен самостоятельный курс или она читается в составе курса по общей химии. Многие данные, полученные в исследованиях по О. х., используются в физической и коллоидной химии, биологии, гистологии, патофизиологии, общей гигиене, курсе профзаболеваний и т. д.

Библиография: Ингольд К. Теоретические основы органической химии, пер. с англ., М., 1973; Крам Д. и X э м-м о н д Дж. Органическая химия, пер. с англ., М., 1964; Матье Ж.-П. и П а-н и ко Р. Курс теоретических основ органической химии, пер. с франц., М., 1975; M о p р и сон Р. и Б о й д Р. Органическая химия, пер. с англ., М., 1974; Несмеянов А. Н. и Несмеянов Н. А. Начала органической химии, т. 1-2, М., 1974; Пальм В. А. Введение в теоретическую органическую химию, М., 1974; Райд К. Курс физической органической химии, пер. с англ., М., 1972; P е-в о А. Я. и 3 e л e н к о в а В. В. Малый практикум по органической химии, М., 1980; Реутов О. А. Теоретические проблемы органической химии, М., 1964; Робертс Дж. и К а с е-р и о М. Основы органической химии, пер. с англ., т. 1-2, М., 1978; С тепа-ненко Б. Н. Курс органической химии, ч. 1-2, М., 1976; он же, Курс органической химии, М., 1979.

Периодические издания - Журнал общей химии, М.- Л., с 1931; Журнал органической химии, М.- Л., с 1965; Химия гетероциклических соединений, Рига, с 1965; Химия природных соединений, Ташкент, с 1965; Bulletin de la Societe chi-mique de France, P., с 1863; Journal of the Chemical Society, Perkin Transaction, I. Organic and Bio-organic Chemistry, II. Physical Organic Chemistry, L., с 1972; Journal of Heterocyclic Chemistry, L., с 1964; Journal of Organic Chemistry, Washington, с 1936; Journal of the Orgariometailic Chemistry, Lausanne, с 1964; Journal of the Society of Organic Synthetic Chemistry of Japan, Tokyo, с 1943; Justus Liebigs Anna-len der Chemie, Weinheim, с 1832; Organic Magnetic Resonance, L., с 1969; Organic Mass Spectrometry, L., с 1968; Organic Preparations and Procedures, N. Y., с 1969; Synthesis, Stuttgart, с 1969; Synthetic Communication, N. Y., с 1971; Tetrahedron, N. Y.- L., с 1957; Tetrahedron Letters, L., с 1959.

Б. H. Степаненко.

С. И. ЛЕВЧЕНКОВ
КРАТКИЙ ОЧЕРК ИСТОРИИ ХИМИИ

Учебное пособие для студентов химфака РГУ


5.2. СТРУКТУРНАЯ ХИМИЯ

Возникновение структурной химии

В первой половине XIX века зародилась принципиально новая концепция химии – структурная химия , исходящая из предпосылки о том, что свойства вещества определяются не только его составом, но и структурой, т.е. порядком соединения атомов и их пространственным расположением. Самые первые структурные представления с необходимостью возникают вместе с атомистикой Дальтона. Развивая представления о способах объединения "простых атомов" в "сложные атомы", Дальтон преследовал лишь одну цель – создать теорию для объяснения эмпирически открытых стехиометрических законов. Тем не менее, сами избранные Дальтоном символы химических элементов предполагали при изображении сложных атомов выбор определённого порядка соединения атомов между собой. Однако вопрос о порядке соединения атомов оказался отложен на довольно долгое время, поскольку химики не имели никаких фактов, указывающих на влияние способа соединения атомов на свойства вещества. Химическая символика Берцелиуса позволила обойти этот вопрос, хотя и в электрохимической теории Берцелиуса всё же рассматриваются некоторые проблемы ("силы сцепления", "соположение" и т.п.), ставшие впоследствии фундаментальными вопросами структурной химии.

Возникновение структурной химии следует, видимо, связывать с открытием явления изомерии. В 1825 г. Иоганн Юстус фон Либих обнаружил, что элементный состав гремучей (фульминовой) кислоты в точности соответствует составу циановой кислоты, которую за год до этого получил Фридрих Вёлер . Повторные анализы, проведённые Вёлером и Либихом, однозначно установили существование веществ, одинаковых по составу, но различающихся по свойствам. Продолжая работы с циановой кислотой, Вёлер, выпаривая раствор изоцианата аммония, получил в 1828 г. изомерное органическое вещество – мочевину. В 1830 г. Й. Я. Берцелиус установил, что виноградная и виннокаменная кислоты также имеют одинаковый состав, но различаются по свойствам. Берцелиус предложил для обнаруженного явления термин "изомерия" (от греческого ισοζ μερον – равной меры). Вскоре обнаружилось, что это явление чрезвычайно распространено в органической химии. В состав органических веществ входит относительно небольшое число элементов – углерод, водород, азот, кислород, сера и фосфор (т.н. элементы-органогены) – при огромном разнообразии свойств. Именно поэтому на протяжении почти всего XIX века структурные представления оказались востребованы, прежде всего, в органической химии. Следует подчеркнуть, однако, что категорически не следует отождествлять понятия "структурная химия" и "органическая химия".

В основу решения вопроса о строении органических веществ было положено представления Берцелиуса о радикалах – полярных группах атомов (не содержащих кислорода), способных переходить из одних веществ в другие без изменения. Еще в 1810-1811 гг. Жозеф Луи Гей-Люссак и Луи Жак Тенар показали, что цианидный радикал CN ведёт себя как единичный атом (причём весьма сходный с атомом хлора или брома). Представления о радикалах, хорошо согласующиеся с электрохимической теорией Берцелиуса, позволили распространить эту теорию и на органические вещества.

Создание теорий структурной химии

Теория сложных радикалов возникла и стала активно разрабатываться многими химиками после работы Либиха и Вёлера "О радикале бензойной кислоты", вышедшей в 1832 г. Либих и Вёлер показали, что группировка атомов С 14 Н 10 О 2 (правильная брутто-формула – С 7 Н 5 О) в цепи превращений бензойной кислоты (бензальдегид – бензойная кислота – бензоилхлорид – бензоилцианид) ведёт себя как единое целое – как некий "органический атом". Теория сложных радикалов быстро получила практически всеобщее признание. В 1837 г. в обобщающей статье "О современном состоянии органической химии", одним из авторов которой являлся Либих, утверждалось, что изучение сложных радикалов – основная задача органической химии, поскольку "циан, амид, бензоил, радикалы аммиака, жиров, алкоголя и его производных образуют истинные элементы органической природы, тогда как простейшие составные части – углерод, водород, кислород и азот – обнаруживаются лишь при разрушении органической материи". Количество описанных радикалов быстро возрастало. Теория сложных радикалов исходила из предположения, что радикалы способны к самостоятельному существованию, хотя химикам и не удавалось их выделить. Берцелиус по этому поводу писал: "Причина, по которой мы не можем изолировать радикалы… не в том, что они не существуют, а в том, что они слишком быстро соединяются".

Координационная химия

На протяжении довольно долгого времени теория валентности применялась главным образом к органическим соединениям. Однако довольно скоро структурные представления оказались востребованы также и в химии комплексных соединений. Теоретические представления этого раздела неорганической химии формировались на основе изучения свойств комплексов, получаемых взаимодействием солей переходных металлов с аммиаком. Первым шагом на пути к координационной химии стала аммонийная гипотеза Томаса Грэма (1840 г.), усмотревшего аналогию между взаимодействием аммиака с кислотами и с солями металлов; согласно этой гипотезе, металл занимал место одного из атомов водорода в ионе аммония. Гипотеза Грэма была развита в 1851 г. Гофманом, предположившим, что атом водорода в аммонийном радикале способен замещаться на другой аммонийный радикал.

Следующим шагом стала цепная теория , предложенная в 1869 г. Кристианом Вильгельмом Бломстрандом и усовершенствованная Софусом Мадсом Йёргенсеном . В теории Бломстранда – Йёргенсена для некоторых элементов допускалась валентность выше обычной, а также возможность образования цепей атомами азота, кислорода и других элементов. Экспериментально установленное различие между кислотными остатками, входящими в состав комплекса, объяснялось различным способом их связывания – непосредственно с металлом или с концом цепи. Например, для аммиакатных комплексов состава CoCl 3 ·6NH 3 , CoCl 3 ·5NH 3 и CoCl 3 ·4NH 3 , из растворов которых нитратом серебра осаждаются три, два и один эквивалент хлора соответственно, Йёргенсен предполагал следующее строение:

Однако теория Бломстранда – Йёргенсена не могла объяснить, например, существование двух изомерных комплексов состава CoCl 3 ·4NH 3 – празеосоли (зелёный) и виолеосоли (фиолетовый).

Органическая химия - наука об органических соединениях и их превращениях. Термин «органическая химия» был введен шведским ученым Я. Берцелиусом в начале XIX в. До этого вещества классифицировали по источнику их получения. Поэтому в XVIII в. различали три химии: «растительную», «животную» и «минеральную». В конце XVIII в. французский химик А. Лавуазье показал, что вещества, получаемые из организмов растений и животных (отсюда их название «органические соединения»), содержат в отличие от минеральных соединений лишь немногие элементы: углерод, водород, кислород, азот, а иногда фосфор и серу. Так как углерод непременно присутствует во всех органических соединениях, органическую химию с середины XIX в. часто называют химией соединений углерода.

Способность атомов углерода образовывать длинные неразветвленные и разветвленные цепи, а также кольца и присоединять к ним другие элементы или их группы является причиной разнообразия органических соединений и того, что они по своему числу значительно превосходят неорганические соединения. Ныне известно около 7 млн. органических соединений, а неорганических - примерно 200 тыс.

После работ А. Лавуазье и до середины XIX в. химики вели интенсивный поиск новых веществ в природных продуктах и разрабатывали новые способы их превращения. Особенное внимание уделялось определению элементного состава соединений, выводу их молекулярных формул и установлению зависимости свойств соединений от их состава. Оказалось, что некоторые соединения, обладая одинаковым составом, отличаются по своим свойствам. Такие соединения назвали изомерами (см. Изомерия). Было замечено, что многие соединения в химических реакциях обмениваются остающимися без изменения группами элементов. Эти группы получили наименование радикалов, а учение, пытавшееся представить органические соединения состоящими из таких радикалов,- теории радикалов. В 40-50-х гг. XIX в. предпринимались попытки классифицировать органические соединения по типу неорганических (например, этиловый спирт С2Н5-О-Н и диэтиловый эфир С2Н5-О-С2Н5 относили к типу воды Н-О-Н). Однако все эти теории, так же как и определение элементного состава и молекулярной массы органических соединений, еще не опирались на твердый фундамент достаточно разработанного атомно-молекулярного учения. Поэтому в органической химии существовал разнобой в способах записи состава веществ, и даже такое простое соединение, как уксусная кислота, изображалось разными эмпирическими формулами: С4Н4o4, С8Н804, СгН402, из которых правильной была лишь последняя.

Только после создания русским ученым А. М. Бутлеровым теории химического строения (1861) органическая химия получила прочную научную основу, обеспечившую ее стремительное развитие в последующем. Предпосылками для ее создания послужили успехи в разработке атомно-молекулярного учения, представлений о валентности и химической связи в 50-е гг. XIX в. Эта теория позволила предсказывать существование новых соединений и их свойства. Ученые приступили к систематическому химическому синтезу предсказываемых наукой органических соединений, не встречающихся в природе. Таким образом, органическая химия стала в значительной степени химией искусственных соединений.

В первой половине XIX в. химики-органики занимались синтезом и исследованием главным образом спиртов, альдегидов, кислот и некоторых других соединений - алициклических и бензоидных (см. Алифатические соединения; Алициклические соединения). Из веществ, не встречающихся в природе, были синтезированы производные хлора, иода и брома, а также первые металлоорганические соединения (см. Элемен-тоорганические соединения). Новым источником органических соединений стала каменноугольная смола. Из нее выделены бензол, нафталин, фенол и другие бензоидные соединения, а также гетероциклические соединения - хинолин, пиридин.

Во второй половине XIX в. синтезированы углеводороды, спирты, кислоты с разветвленной углеродной цепью, начались изучение строения и синтез соединений, важных в практическом отношении (индиго, изопрен, сахара). Синтез Сахаров (см. Углеводы) и многих других соединений стал возможен после возникновения стереохимии, продолжившей развитие теории химического строения. Органическая химия первой половины XIX в. была тесно связана с фармацией - наукой о лекарственных веществах.

Во второй половине XIX в. наметился прочный союз органической химии с промышленностью, в первую очередь анилинокрасочной. Перед химиками были поставлены задачи расшифровки строения известных природных красителей (ализарин, индиго и др.), создания новых красителей, а также разработки технически приемлемых способов их синтеза. Так, в 70- 80-х гг. XIX в. возникла прикладная органическая химия.

Конец XIX - начало XX в. ознаменовались созданием новых направлений в развитии органической химии. В промышленном масштабе стал использоваться богатейший источник органических соединений - нефть, и с этим было связано бурное развитие химии алициклических соединений и вообще химии углеводородов (см. Нефтехимия). Появились практически важные каталитические методы превращения органических соединений, созданные П. Сабатьё во Франции, В. Н. Ипатьевым и позднее Н. Д. Зелинским в России (см. Катализ). Теория химического строения значительно углубилась в результате открытия электрона и создания электронных представлений о строении атомов и молекул. Были открыты и разработаны мощные методы физико-химических и физических исследований молекул, в первую очередь рентгеноструктурный анализ. Это позволило выяснить строение, а следовательно, понять свойства и облегчить синтез огромного числа орган! ческих соединений.

С начала 30-х гг. XX в. в связи с возникновением квантовой механики появились вычислительные методы, позволяющие расчетным путем делать заключения о строении и свойствах органических соединений (см. Квантовая химия).

Среди новых направлений химической науки - химия органических производных фтора, получивших большое практическое значение. В 50-х гг. XX в. возникла химия ценовых соединений (ферроцен и др.), представляющая соединительное звено между органической и неорганической химией. В практику химиков-органиков прочно вошло применение изотопов. Еще в начале XX в. были открыты свободно существующие органические радикалы (см. Радикалы свободные), а впоследствии создана химия неполнова-лентных органических соединений - ионов карбония, карбанионов, радикал-ионов, молекулярных ионов (см. Ионы). В 60-х гг. были синтезированы совершенно новые типы органических соединений, например катенаны, в которых отдельные циклические молекулы связаны друг с другом, подобно тому как изображают пять переплетенных олимпийских колец.

Органическая химия в XX в. приобрела огромное практическое значение, особенно для переработки нефти, синтеза полимеров, синтеза и изучения физиологически активных веществ. В результате из органической химии выделились в самостоятельные дисциплины такие ее направления, как нефтехимия, химия полимеров, биоорганическая химия.

Современная органическая химия имеет сложную структуру. Сердцевину ее составляет препаративная органическая химия, занимающаяся выделением из природных продуктов и искусственным приготовлением индивидуальных органических соединений, а также созданием новых методов их получения. Решить эти задачи невозможно без опоры на аналитическую химию, позволяющую судить о степени очистки, гомогенности (однородности) и индивидуальности органических соединений, предоставляющую данные об их составе и строении в изолированном состоянии, а также тогда, когда они выступают в качестве исходных веществ, промежуточных и конечных продуктов реакции. Для этой цели аналитическая химия использует различные химические, физико-химические и физические методы исследования. Сознательный подход к решению задач, стоящих перед препаративной и аналитической органической химией, обеспечивается опорой их на теоретическую органическую химию. Предметом этой науки является дальнейшая разработка теории строения, а также формулирование зависимостей между составом и строением органических соединений и их свойствами, между условиями протекания органических реакций и их скоростью и достижением химического равновесия. Объектами теоретической органической химии могут быть как нереагирующие соединения, так и соединения во время их превращений, а также промежуточные, нестойкие образования, возникающие в ходе реакций.

Такая структура органической химии сложилась под влиянием различных факторов, важнейшим из которых были и остаются запросы практики. Именно этим объясняется то, например, обстоятельство, что в современной органической химии ускоренно развивается химия гетероциклических соединений, тесно связанная с таким прикладным направлением, как химия синтетических и природных лекарственных средств.