Все названия углекислого газа. Углекислый газ, он же углекислота, он же двуокись углерода…

Газировка, вулкан, Венера, рефрижератор – что между ними общего? Углекислый газ. Мы собрали для Вас самую интересную информацию об одном из самых важных химических соединений на Земле.

Что такое диоксид углерода

Диоксид углерода известен в основном в своем газообразном состоянии, т.е. в качестве углекислого газа с простой химической формулой CO2. В таком виде он существует в нормальных условиях – при атмосферном давлении и «обычных» температурах. Но при повышенном давлении, свыше 5 850 кПа (таково, например, давление на морской глубине около 600 м), этот газ превращается в жидкость. А при сильном охлаждении (минус 78,5°С) он кристаллизуется и становится так называемым сухим льдом, который широко используется в торговле для хранения замороженных продуктов в рефрижераторах.

Жидкая углекислота и сухой лед получаются и применяются в человеческой деятельности, но эти формы неустойчивы и легко распадаются.

А вот газообразный диоксид углерода распространен повсюду: он выделяется в процессе дыхания животных и растений и является важной составляющей частью химического состава атмосферы и океана.

Свойства углекислого газа

Углекислый газ CO2 не имеет цвета и запаха. В обычных условиях он не имеет и вкуса. Однако при вдыхании высоких концентраций диоксида углерода можно почувствовать во рту кисловатый привкус, вызванный тем, что углекислый газ растворяется на слизистых и в слюне, образуя слабый раствор угольной кислоты.

Кстати, именно способность диоксида углерода растворяться в воде используется для изготовления газированных вод. Пузырьки лимонада – тот самый углекислый газ. Первый аппарат для насыщения воды CO2 был изобретен еще в 1770 г., а уже в 1783 г. предприимчивый швейцарец Якоб Швепп начал промышленное производство газировки (торговая марка Schweppes существует до сих пор).

Углекислый газ тяжелее воздуха в 1,5 раза, поэтому имеет тенденцию «оседать» в его нижних слоях, если помещение плохо вентилируется. Известен эффект «собачьей пещеры», где CO2 выделяется прямо из земли и накапливается на высоте около полуметра. Взрослый человек, попадая в такую пещеру, на высоте своего роста не ощущает избытка углекислого газа, а вот собаки оказываются прямо в густом слое диоксида углерода и подвергаются отравлению.

CO2 не поддерживает горение, поэтому его используют в огнетушителях и системах пожаротушения. Фокус с тушением горящей свечки содержимым якобы пустого стакана (а на самом деле — углекислым газом) основан именно на этом свойстве диоксида углерода.

Углекислый газ в природе: естественные источники

Углекислый газ в природе образуется из различных источников:

  • Дыхание животных и растений.
    Каждому школьнику известно, что растения поглощают углекислый газ CO2 из воздуха и используют его в процессах фотосинтеза. Некоторые хозяйки пытаются обилием комнатных растений искупить недостатки . Однако растения не только поглощают, но и выделяют углекислый газ в отсутствие света – это часть процесса дыхания. Поэтому джунгли в плохо проветриваемой спальне – не очень хорошая идея: ночью уровень CO2 будет расти еще больше.
  • Вулканическая деятельность.
    Диоксид углерода входит в состав вулканических газов. В местностях с высокой вулканической активностью CO2 может выделяться прямо из земли – из трещин и разломов, называемых мофетами. Концентрация углекислого газа в долинах с мофетами столь высока, что многие мелкие животные, попав туда, умирают.
  • Разложение органических веществ.
    Углекислый газ образуется при горении и гниении органики. Объемные природные выбросы диоксида углерода сопутствуют лесным пожарам.

Углекислый газ «хранится» в природе в виде углеродных соединений в полезных ископаемых: угле, нефти, торфе, известняке. Гигантские запасы CO2 содержатся в растворенном виде в мировом океане.

Выброс углекислого газа из открытого водоема может привести к лимнологической катастрофе, как это случалось, например, в 1984 и 1986 гг. в озерах Манун и Ньос в Камеруне. Оба озера образовались на месте вулканических кратеров – ныне они потухли, однако в глубине вулканическая магма все еще выделяет углекислый газ, который поднимается к водам озер и растворяется в них. В результате ряда климатических и геологических процессов концентрация углекислоты в водах превысила критическое значение. В атмосферу было выброшено огромное количество углекислого газа, который наподобие лавины спустился по горным склонам. Жертвами лимнологических катастроф на камерунских озерах стали около 1 800 человек.

Искусственные источники углекислого газа

Основными антропогенными источниками диоксида углерода являются:

  • промышленные выбросы, связанные с процессами сгорания;
  • автомобильный транспорт.

Несмотря на то, что доля экологичного транспорта в мире растет, подавляющая часть населения планеты еще не скоро будет иметь возможность (или желание) перейти на новые автомобили.

Активное сведение лесов в промышленных целях также ведет к повышению концентрации углекислого газа СО2 в воздухе.

CO2 – один из конечных продуктов метаболизма (расщепления глюкозы и жиров). Он выделяется в тканях и переносится при помощи гемоглобина к легким, через которые выдыхается. В выдыхаемом человеком воздухе около 4,5% диоксида углерода (45 000 ppm) – в 60-110 раз больше, чем во вдыхаемом.

Углекислый газ играет большую роль в регуляции кровоснабжения и дыхания. Повышение уровня CO2 в крови приводит к тому, что капилляры расширяются, пропуская большее количество крови, которое доставляет к тканям кислород и выводит углекислоту.

Дыхательная система тоже стимулируется повышением содержания углекислого газа, а не нехваткой кислорода, как может показаться. В действительности нехватка кислорода долго не ощущается организмом и вполне возможна ситуация, когда в разреженном воздухе человек потеряет сознание раньше, чем почувствует нехватку воздуха. Стимулирующее свойство CO2 используется в аппаратах искусственного дыхания: там углекислый газ подмешивается к кислороду, чтобы «запустить» дыхательную систему.

Углекислый газ и мы: чем опасен СO2

Углекислый газ необходим человеческому организму так же, как кислород. Но так же, как с кислородом, переизбыток углекислого газа вредит нашему самочувствию.

Большая концентрация CO2 в воздухе приводит к интоксикации организма и вызывает состояние гиперкапнии. При гиперкапнии человек испытывает трудности с дыханием, тошноту, головную боль и может даже потерять сознание. Если содержание углекислого газа не снижается, то далее наступает черед – кислородного голодания. Дело в том, что и углекислый газ, и кислород перемещаются по организму на одном и том же «транспорте» – гемоглобине. В норме они «путешествуют» вместе, прикрепляясь к разным местам молекулы гемоглобина. Однако повышенная концентрация углекислого газа в крови понижает способность кислорода связываться с гемоглобином. Количество кислорода в крови уменьшается и наступает гипоксия.

Такие нездоровые для организма последствия наступают при вдыхании воздуха с содержанием CO2 больше 5 000 ppm (таким может быть воздух в шахтах, например). Справедливости ради, в обычной жизни мы практически не сталкиваемся с таким воздухом. Однако и намного меньшая концентрация диоксида углерода отражается на здоровье не лучшим образом.

Согласно выводам некоторых , уже 1 000 ppm CO2 вызывает у половины испытуемых утомление и головную боль. Духоту и дискомфорт многие люди начинают ощущать еще раньше. При дальнейшем повышении концентрации углекислого газа до 1 500 – 2 500 ppm критически , мозг «ленится» проявлять инициативу, обрабатывать информацию и принимать решения.

И если уровень 5 000 ppm почти невозможен в повседневной жизни, то 1 000 и даже 2 500 ppm легко могут быть частью реальности современного человека. Наш показал, что в редко проветриваемых школьных классах уровень CO2 значительную часть времени держится на отметке выше 1 500 ppm, а иногда подскакивает выше 2 000 ppm. Есть все основания предполагать, что во многих офисах и даже квартирах ситуация похожая.

Безопасным для самочувствия человека уровнем углекислого газа физиологи считают 800 ppm.

Еще одно исследование обнаружило связь между уровнем CO2 и окислительным стрессом: чем выше уровень диоксида углерода, тем больше мы страдаем от , который разрушает клетки нашего организма.

Углекислый газ в атмосфере Земли

В атмосфере нашей планеты всего около 0,04% CO2 (это приблизительно 400 ppm), а совсем недавно было и того меньше: отметку в 400 ppm углекислый газ перешагнул только осенью 2016 года. Ученые связывают рост уровня CO2 в атмосфере с индустриализацией: в середине XVIII века, накануне промышленного переворота, он составлял всего около 270 ppm.

Вы уже знаете, что при выдохе из легких выходит углекислый газ. А вот что вам известно об этом веществе? Наверное, немного. Сегодня я отвечу на все вопросы, касающиеся углекислого газа.

Определение

Это вещество в нормальных условиях является бесцветным газом. Во многих источниках его могут называть по-разному: и оксидом углерода (IV), и угольным ангидридом, и двуокисью углерода, и диоксидом углерода.

Свойства

Углекислый газ (формула СО 2) является бесцветным газом, имеющим кислые запах и вкус, растворимым в воде веществом. Если его как следует охладить, то образуется снегообразная масса, называемая сухим льдом (фотография ниже), которая сублимирует при температуре -78 о С.

Является одним из продуктов гниения или горения любого органического вещества. Растворяется в воде только при температуре 15 о С и только в том случае, если отношение вода:углекислый газ равно 1:1. Плотность углекислого газа может быть разной, но в стандартных условиях она равняется 1,976 кг/м 3 . Это если он находится в газообразном виде, а в других состояниях (жидком/газообразном) значения плотности тоже будут другими. Данное вещество является кислотным оксидом, его добавление в воду приводит к получению угольной кислоты. Если соединить углекислый газ с любой щелочью, то в результате последующей реакции образуются карбонаты и гидрокарбонаты. Этот оксид не может поддерживать горение, кроме некоторых исключений. Это активные металлы, и при реакции такого вида они забирают у него кислород.

Получение

Углекислый и еще некоторые газы в больших количествах выделяются, когда производят алкоголь или разлагаются природные карбонаты. Затем полученные газы проходят промывание растворенным карбонатом калия. Далее следует поглощение ими углекислого газа, продуктом данной реакции является гидрокарбонат, при нагревании раствора которого получают искомый оксид.

Но сейчас его с успехом заменяет растворенный водой этаноламин, который абсорбирует содержащийся в дымовом газе оксид углерода и отдает его при нагревании. Также этот газ является побочным продуктом тех реакций, при которых получают чистые азот, кислород и аргон. В лаборатории немного углекислоты получается, когда карбонаты и гидрокарбонаты взаимодействуют с кислотами. Еще она образуется, когда реагируют пищевая сода и лимонный сок или тот же гидрокарбонат натрия и уксус (фото).

Применение

Пищевая промышленность не может обойтись без использования углекислоты, где она известна в качестве консерванта и разрыхлителя, имеющего код E290. Ее в виде жидкости содержит любой огнетушитель.

Также оксид четырехвалентного углерода, который выделяется в процессе брожения, служит хорошей подкормкой аквариумным растениям. Он содержится и во всем известной газировке, которую многие довольно часто покупают в продуктовом магазине. Сварка проволокой происходит в углекислой среде, но если температура данного процесса очень высока, то он сопровождается диссоциацией углекислоты, при которой выделяется кислород, окисляющий металл. Тогда сварка не обходится без раскислителей (марганца или кремния). Углекислым газом накачивают велосипедные колеса, он присутствует и в баллончиках пневматического оружия (такая его разновидность называется газобаллонной). Также данный оксид в твердом состоянии, называемый сухим льдом, нужен как хладагент в торговле, научных исследованиях и при починке некоторой техники.

Заключение

Вот до чего полезен для человека углекислый газ. И не только в промышленности, он играет и важную биологическую роль: без него не может происходить газообмен, регуляция сосудистого тонуса, фотосинтез и многие другие природные процессы. Но его переизбыток или недостача в воздухе некоторое время могут негативно влиять на физическое состояние всех живых организмов.

Диоксид углерода - бесцветный газ со слегка кисловатым запахом и вкусом, зарегистрированный в международной классификации пищевых добавок под кодом Е290. Используется в качестве консерванта, пропеллента, антиоксиданта и регулятора кислотности.

Общая характеристика Диоксида углерода

Диоксид углерода представляет собой тяжёлый газ без запаха и цвета, известный как углекислый. Особенностью диоксида углерода является его способность при атмосферном давлении переходить из твёрдого состояния сразу в газообразное, минуя стадию жидкости (calorizator). В жидком состоянии диоксид углерода хранится при повышенном давлении. Твёрдое состояние углекислого газа - кристаллы белого цвета - известное как «сухой лёд».

Образование диоксида углерода происходит в процессе горения и гниения органических веществ, его выделяют при дыхании растения и животные, в природе находится в воздухе и минеральных источниках.

Польза и вред Диоксида углерода

Диоксид углерода не является токсичным веществом, поэтому считается безвредным для организма человека. Но, являясь ускорителем процесса всасывания веществ в слизистую желудка, провоцирует, например, быстрое опьянение при употреблении газированных алкогольных напитков. Не рекомендуется увлекаться употреблением газировки всем, имеющим любые проблемы с желудочно-кишечным трактом, потому что самыми безобидными негативными проявлениями действия Е290 являются вздутие живота и отрыжка.

Применение Е290

Основным применением Диоксида углерода является его использование как консерванта Е290 в производстве газированных напитков. Часто его используют в процессе сбраживания виноградного сырья для управления брожением. Е290 входит в состав консервантов для хранения в упаковках мясной и молочной продукции, хлебобулочных изделий, овощей и фруктов. «Сухой лёд» используют как замораживающий и охлаждающий агент для сохранности мороженого, а также свежей рыбы и морепродуктов. Как разрыхлитель Е290 «работает» в процессе выпечки хлеба и сдобы.

В продаже можно встретить Е290 Диоксид углерода в баллонах или в виде блоков «сухого льда» в специальных герметичных упаковках.

Использование Е290 Диоксида углерода в России

На территории Российской Федерации разрешено использование пищевой добавки Е290 в пищевой промышленности как консерванта и разрыхлителя.

Вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях - газообразном, жидком, твёрдом и сверхкритическом.

Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться - переходить сразу в твёрдое состояние, минуя жидкую фазу.

Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте - путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

Жидкое состояние СО2 носит техническое название «жидкая углекислота » или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется - постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

  • Удельный вес . Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
  • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
  • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
  • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
  • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное, стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
  • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 - 1,6.
  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
  • V= R T/p - A, где
  • V - объем, м3/кг;
  • R - газовая постоянная 848/44 = 19,273;
  • Т - температура, К град.;
  • р давление, кг/м2;
  • А - дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =(0, 0825 + (1,225)10-7 р)/(Т/100)10/3.
  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  • i" x + i"" у = i,
  • x + у = 1, где,
  • x и у - доля вещества в жидком и парообразном виде;
  • i" - энтальпия жидкости;
  • i"" - энтальпия пара;
  • i - энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  • i"" у + i"" z = i,
  • у + z = 1, где,
  • i"" - энтальпия твердой углекислоты;
  • z - доля вещества в твердом состоянии.
  • В тройной точке для трех фаз имеются также только два уравнения
  • i" x + i"" у + i""" z = i,
  • x + у + z = 1.
  • Зная значения i," i"," i""" для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
  • Град.С -50 -40 -30 -20 -10 0 10 20
  • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
  • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
  • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.
  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
  • i = 169,34 + (0,1955 + 0,000115t)t - 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
  • I - ккал/кг, р - кг/см2, Т - град.К, t - град.С.
  • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же, вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Теплопроводность . Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
  • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
  • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
  • Газообразная углекислота
  • 1 130 136 142 148
  • 20 - 147 152 157
  • 40 - 173 174 175
  • 60 - - 228 213
  • 80 - - - 325
  • Жидкая углекислота
  • 50 848 - - -
  • 60 870 753 - -
  • 70 888 776 - -
  • 80 906 795 670
    Теплопроводность твердой углекислоты может быть вычислена по формуле:
    236,5/Т1,216 ст., ккал/м*час*град.С.
  • Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.
  • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  • Давление, ата -15 град. 0 град. 20 град. 40 град.
  • 5 1,38 1,42 1,49 1,60
  • 30 12,04 1,63 1,61 1,72
  • 75 13,13 12,01 8,32 2,30
  • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 - 125 ати, находится в пределах 1,6016 - 1,6425.
  • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 - 39 ати 1,009 - 1,060.
  • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
  • Х = 18/44 * p’/p - p’ = 0,41 p’/p - p’ кг/кг, где
  • p’ - парциальное давление водяных паров при 100%-м насыщении;
  • р - общее давление паро-газовой смеси.
  • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
  • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 - 5 ати подчиняется закону Генри, который выражается уравнением
  • Р = Н Х, где
  • Р - парциальное давление газа над жидкостью;
  • Х - количество газа в молях;
  • Н - коэффициент Генри.
  • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
  • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
  • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

Техника безопасности

По степени воздействия на организм человека газообразный диоксид углерода относится к 4-му классу опасности по ГОСТу 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». Предельно допустимая концентрация в воздухе рабочей зоны не установлена, при оценке этой концентрации следует ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5%.

При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.

Наиболее часто встречающиеся процессы образования этого соединения - гниение животных и растительных останков, горение различных видов топлива, дыхание животных и растений. Например, один человек за сутки выделяет в атмосферу около килограмма углекислого газа. Оксид и диоксид углерода могут образовываться и в неживой природе. Углекислый газ выделяется при вулканической деятельности, а также может быть добыт из минеральных водных источников. Углекислый газ находится в небольшим количестве и в атмосфере Земли.

Особенности химического строения данного соединения позволяют ему участвовать во множестве химических реакций, основой для которых является диоксид углерода.

Формула

В соединении этого вещества четырехвалентный атом углерода образовывает линейную связь с двумя молекулами кислорода. Внешний вид такой молекулы можно представить так:

Теория гибридизации объясняет строение молекулы диоксида углерода так: две существующие сигма-связи образованы между sp-орбиталями атомов углерода и двумя 2р-орбиталями кислорода; р-орбитали углерода, которые не принимают участие в гибридизации, связаны в соединении с аналогичными орбиталями кислорода. В химических реакциях углекислый газ записывается в виде: CO 2.

Физические свойства

При нормальных условиях диоксид углерода представляет собой бесцветный газ, не обладающий запахом. Он тяжелее воздуха, поэтому углекислый газ и может вести себя, как жидкость. Например, его можно переливать из одной емкости в другую. Это вещество немного растворяется в воде - в одном литре воды при 20 ⁰С растворяется около 0,88 л CO 2 . Небольшое понижение температуры кардинально меняет ситуацию - в том же литре воды при 17⁰С может раствориться 1,7 л CO 2 . При сильном охлаждении это вещество осаждается в виде снежных хлопьев - образуется так называемый «сухой лед». Такое название произошло от того, что при нормальном давлении вещество, минуя жидкую фазу, сразу превращается в газ. Жидкий диоксид углерода образуется при давлении чуть выше 0,6 МПа и при комнатной температуре.

Химические свойства

При взаимодействии с сильными окислителями 4-диоксид углерода проявляет окислительные свойства. Типичная реакция этого взаимодействия:

С + СО 2 = 2СО.

Так, при помощи угля диоксид углерода восстанавливается до своей двухвалентной модификации - угарного газа.

При нормальных условиях углекислый газ инертен. Но некоторые активные металлы могут в нем гореть, извлекая из соединения кислород и высвобождая газообразный углерод. Типичная реакция - горение магния:

2Mg + CO 2 = 2MgO + C.

В процессе реакции образуется оксид магния и свободный углерод.

В химических соединениях СО 2 часто проявляет свойства типичного кислотного оксида. Например, он реагирует с основаниями и основными оксидами. Результатом реакции становятся соли угольной кислоты.

Например, реакция соединения оксида натрия с углекислым газом может быть представлена так:

Na 2 O + CO 2 = Na 2 CO 3 ;

2NaOH + CO 2 = Na 2 CO 3 + H 2 O;

NaOH + CO 2 = NaHCO 3 .

Угольная кислота и раствор СО 2

Диоксид углерода в воде образует раствор с небольшой степенью диссоциации. Такой раствор углекислого газа называется угольной кислотой. Она бесцветна, слабо выражена и имеет кисловатый вкус.

Запись химической реакции:

CO 2 + H 2 O ↔ H 2 CO 3.

Равновесие довольно сильно сдвинуто влево - лишь около 1% начального углекислого газа превращается в угольную кислоту. Чем выше температура - тем меньше в растворе молекул угольной кислоты. При кипении соединения она исчезает полностью, и раствор распадается на диоксид углерода и воду. Структурная формула угольной кислоты представлена ниже.

Свойства угольной кислоты

Угольная кислота очень слабая. В растворах она распадается на ионы водорода Н + и соединения НСО 3 - . В очень небольшом количестве образуются ионы СО 3 - .

Угольная кислота - двухосновная, поэтому соли, образованные ею, могут быть средними и кислыми. Средние соли в русской химической традиции называются карбонатами, а сильные - гидрокарбонатами.

Качественная реакция

Одним из возможных способов обнаружения газообразного диоксида углерода является изменение прозрачности известкового раствора.

Ca(OH) 2 + CO 2 = CaCO 3 ↓ + H 2 O.

Этот опыт известен еще из школьного курса химии. В начале реакции образуется небольшое количество белого осадка, который впоследствии исчезает при пропускании через воду углекислого газа. Изменение прозрачности происходит потому, что в процессе взаимодействия нерастворимое соединение - карбонат кальция превращается в растворимое вещество - гидрокарбонат кальция. Реакция протекает по такому пути:

CaCO 3 + H 2 O + CO 2 = Ca(HCO 3) 2 .

Получение диоксида углерода

Если требуется получить небольшое количество СО2, можно запустить реакцию соляной кислоты с карбонатом кальция (мрамором). Химическая запись этого взаимодействия выглядит так:

CaCO 3 + HCl = CaCl 2 + H 2 O + CO 2 .

Также для этой цели используют реакции горения углеродсодержащих веществ, например ацетилена:

СН 4 + 2О 2 → 2H 2 O + CO 2 -.

Для сбора и хранения полученного газообразного вещества используют аппарат Киппа.

Для нужд промышленности и сельского хозяйства масштабы получения диоксида углерода должны быть большими. Популярным методом такой масштабной реакции является обжиг известняка, в результате которого получается диоксид углерода. Формула реакции приведена ниже:

CaCO 3 = CaO + CO 2 .

Применение диоксида углерода

Пищевая промышленность после масштабного получения «сухого льда» перешла на принципиально новый метод хранения продуктов. Он незаменим при производстве газированных напитков и минеральной воды. Содержание СО 2 в напитках придает им свежесть и заметно увеличивает срок хранения. А карбидизация минеральных вод позволяет избежать затхлости и неприятного вкуса.

В кулинарии часто используют метод погашения лимонной кислоты уксусом. Выделяющийся при этом углекислый газ придает пышность и легкость кондитерским изделиям.

Данное соединение часто используется в качестве пищевой добавки, повышающей срок хранения пищевых продуктах. Согласно международным нормам классификации химических добавок содержания в продуктах, проходит под кодом Е 290,

Порошкообразный углекислый газ - одно из наиболее популярных веществ, входящих в состав пожаротушительных смесей. Это вещество встречается и в пене огнетушителей.

Транспортировать и хранить углекислый газ лучше всего в металлических баллонах. При температуре более 31⁰С давление в баллоне может достигнуть критического и жидкий СО 2 перейдет в сверхкритическое состояние с резким подъемом рабочего давления до 7,35 МПа. Металлический баллон выдерживает внутреннее давление до 22 МПа, поэтому диапазон давления при температурах свыше тридцати градусов признается безопасным.