Найти функцию распределения F(x). Математическое ожидание непрерывной случайной величины. Пример решения Случайная величина имеет плотность распределения вида

Математическим ожиданием дискретной случайной величины называется:

В случае бесконечного множества значений в правой части (4.4) находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится.

М(Х) представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами:

1) М(С)=С, где С=const

2) M (CX)=CM (X) (4.5)

3) M (X+Y)=M(X)+M(Y), для любых Х и Y.

4) M (XY)=M (X)M(Y), если Х и Y независимы.

Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)=а вводятся понятия дисперсии D(X) и среднего квадратического (стандартного) отклонения . Дисперсией называется математическое ожидание квадрата разности (X- ), т.е. :

D(X)=M(X- ) 2 = p i ,

Где =М(X); определяется как квадратный корень из дисперсии, т.е. .

Для вычисления дисперсии пользуются формулой:

(4.6)

Свойства дисперсии и среднего квадратического отклонения:

1) D(C)=0, где С=сonst

2) D(CX)=C 2 D(X), (CX)= çCç (X) (4.7)

3) D(X+Y) =D(X)+D(Y),

если Х и У независимы.

Размерность величин и совпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х.

4.3. Математические операции над случайными величинами.

Пусть случайная величина Х принимает значения с вероятностями а случайная величина Y- значения с вероятностями Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид таблица 4.2:

Таблица 4.2

...
...

Квадрат случайной величины Х, т.е. , - это новая случайная величина,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений.

Сумма случайных величин Х и У - это новая случайная величина, которая принимает все значения вида с вероятностями , выражающими вероятность того, что случайная величина Х примет значение а У - значение , то есть

(4.8)

Если случайные величины Х и У независимы, то:

Аналогично определяются разность и произведение случайных величин Х и У.

Разность случайных величин Х и У - это новая случайная величина, которая принимает все значения вида , а произведение - все значения вида с вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9).

4.4. Распределения Бернулли и Пуассона .

Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода, называемые успех и неуспех.

Эти два исхода - взаимно несовместные и противоположные события.

2. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.

3. Все n испытаний - независимы. Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.

Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна , событие наступит ровно m раз (в любой последовательности), равна

(4.10)

Выражение (4.10) называется формулой Бернулли.

Вероятности того, что событие наступит:

а) менее m раз,

б) более m раз,

в) не менее m раз,

г) не более m раз - находятся соответственно по формулам:

Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3).

Таблица 4.3

Число успехов Х=m ... m ... n
Вероятность Р ... ...

Так как правая часть формулы (4.10) представляет общий член биноминального разложения , то этот закон распределения называют биномиальным . Для случайной величины Х, распределенной по биноминальному закону, имеем.

Определение 13.1. Случайная величина Х называется дискретной , если она принимает конечное либо счётное число значений.

Определение 13.2. Законом распределения случайной величины Х называется совокупность пар чисел ( , ), где – возможные значения случайной величины, а – вероятности, с которыми случайная величина принимает эти значения, т.е. = P{X = }, причём =1.

Простейшей формой задания дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующие им вероятности. Такая таблица называется рядом распределения дискретной случайной величины.

Х
Р

Ряд распределения можно изобразить графически. В этом случае по оси абсцисс откладывается , по оси ординат – вероятность . Точки с координатами ( , ) соединяют отрезками и получают ломаную, называемую многоугольником распределения, который является одной из форм задания закона распределения дискретной случайной величины.

Пример 13.3. Построить многоугольник распределения случайной величины Х с рядом распределения

Х
Р 0,1 0,3 0,2 0,4

Определение 13.4. Говорят, что дискретная случайная величина Х имеет биноминальное распределение с параметрами (n,p )если она может принимать целые неотрицательные значения k {1,2,…,n } с вероятностями Р(Х=х )= .

Ряд распределения имеет вид:

Х k n
Р

Сумма вероятностей = =1.

Определение 13.5. Говорят, что дискретная форма случайной величины Х имеет распределение Пуассона с параметром ( >0),если она принимает целые значения k {0,1,2,…} с вероятностями Р(Х=k )= .

Ряд распределения имеет вид

Х k
Р

Так как разложение в ряд Маклорена имеет следующий вид , тогда сумма вероятностей = = =1.

Обозначим через Х число испытаний, которые нужно провести до первого появления события А в независимых испытаниях, если вероятность появления А в каждом из них равна p (0< p <1), а вероятность непоявления . Возможными значениями Х являются натуральные числа.

Определение 13.6. Говорят, что случайная величина Х имеет геометрическое распределение с параметром p (0< p <1), если она принимает натуральные значения k N с вероятностями Р(Х=k)= , где . Ряд распределения:

Х n
Р

Сумма вероятностей = = =1.

Пример 13.7. Монета брошена 2 раза. Составить ряд распределения случайной величины Х числа выпадений «герба».

P 2 (0)= = ; P 2 (1)= = =0,5; P 2 (2)= = .

Х
Р

Ряд распределения примет вид:

Пример 13.8. Из орудия стреляют до первого попадания по цели. Вероятность попадания при одном выстреле 0,6. произойдёт попадание при 3-м выстреле.

Поскольку p =0,6, q =0,4, k =3, тогда Р(А )= =0,4 2 *0,6=0,096.


14 Числовые характеристики дискретных случайных величин

Полностью характеризует случайную величину закон распределения, однако часто он бывает неизвестен, поэтому приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами (параметрами), описывающими случайную величину суммарно. Они называются числовыми характеристиками случайной величины. К ним относятся: математическое ожидание, дисперсия и др.

Определение 14.1. Математическим ожиданием дискретной случайной величины называют сумму произведений всех её возможных значений на их вероятности. Обозначают математическое ожидание случайной величины Х через МХ =М(Х )=ЕХ .

Если случайная величина Х принимает конечное число значений, то МХ = .

Если случайная величина Х принимает счетное число значений, то МХ = ,

причём математическое ожидание существует, если ряд сходится абсолютно.

Замечание 14.2. Математическое ожидание некоторое число, приближённо равное определённому значению случайной величины.

Пример 14.3. Найти математическое ожидание случайной величины Х , зная её ряд распределения

Х
Р 0,1 0,6 0,3

МХ =3*0,1+5*0,6+2*0,3=3,9.

Пример 14.4. Найти математическое ожидание числа появлений события А в одном испытании, если вероятность события А равна p .

Случайная величина Х – число появления события A в одном испытании. Она может принимать значения =1 (A наступило) с вероятностью p и =0 с вероятностью , т.е. ряд распределения

Отсюда МС=С*1=С.

Замечание 14.6. Произведение постоянной величины С на дискретную случайную величину Х Определяется как дискретная случайная величина СХ , возможные значения которой равны произведениям постоянной С на возможные значения Х , вероятности этих значений СХ равны вероятностям соответствующих возможных значений Х .

Свойство 14.7. Постоянный множитель можно выносить за знак математического ожидания:

М(СХ )=С∙МХ .

Если случайная величина Х имеет ряд распределения

Х
Р

Ряд распределения случайной величины

СХ
Р

М(СХ )= = = С∙М(Х ).

Определение 14.8. Случайные величины , ,…, называются независимыми , если для , i =1,2,…,n

Р{ , ,…, }= Р{ } Р{ }… Р{ } (1)

Если в качестве = , i =1,2,…,n , то получим из (1)

Р{ < , < ,…, < }= Р{ < }Р{ < }… Р{ < }, откуда получается другая формула:

( , ,…, ) = () ()... () (2)

для совместной функции распределения случайных величин , ,…, , которую можно также взять в качестве определения независимости случайной величины.

Свойство 14.9. Математическое ожидание произведения 2-х независимых случайных величин равно произведению их математических ожиданий:

М(ХУ )=МХ ∙МУ .

Свойство 14.10. Математическое ожидание суммы 2-х случайных величин равно сумме их математических ожиданий:

М(Х+У )=МХ У .

Замечание 14.11. Свойства 14.9 и 14.10 можно обобщать на случай нескольких случайных величин.

Пример 14.12. Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании 2-х игровых костей.

Пусть Х число очков, выпавших на первой кости, У число очков, выпавших на второй кости. Они имеют одинаковые ряды распределения:

Х
Р

Тогда МХ У = (1+2+3+4+5+6)= = . М(Х+У )=2* =7.

Теорема 14.13. Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: МХ =np .

Пусть Х – число появлений события А в n независимых испытаниях. –число появлений события А в i -том испытании, i =1,2,…,n. Тогда = + +…+ . По свойствам математического ожидания МХ = . Из примера 14.4 MX i =p, i =1,2,…,n, отсюда МХ = =np .

Определение 14.14. Дисперсией случайной величины называется число DX =M(X -MX ) 2 .

Определение 14.15. Средним квадратическим отклонением случайной величины Х называется число =.

Замечание 14.16. Дисперсия является мерой разброса значений случайной величины вокруг её математического ожидания. Она всегда неотрицательна. Для подсчёта дисперсии удобнее пользоваться другой формулой:

DX = M(X - MX ) 2 = M(X 2 - 2X∙ MX + (MX ) 2) = M(X 2) - 2M(X∙ MX ) + M(MX ) 2 = =M(X 2)-MX∙ MX+ (MX ) 2 = M(X 2) - (MX ) 2 .

Отсюда DX = M(X 2) - (MX ) 2 .

Пример 14.17. Найти дисперсию случайной величины Х , Заданной рядом распределения

X
P 0,1 0,6 0,3

MX =2*0,1+3*0,6+5*0,3=3,5; M(X 2)= 4*0,1+9*0,6+25*0,3=13,3;

DX =13.3-(3,5) 2 =1,05.

Свойства дисперсии

Свойство 14.18. Дисперсия постоянной величины равна 0:

DC = M(С- MС) 2 = M(С- С) 2 =0.

Свойство 14.19. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат

D(СX ) =C 2 DX .

D(CХ)=М(С- CMX ) 2 =М(С(X- MX ) 2) = C 2 M(X - MX ) 2 = C 2 DX .

Свойство 14.20. Дисперсия суммы 2-х независимых случайных величин равна сумме дисперсий этих величин

D(Х+Y )=DХ +DY .

D(X + У )=М((X + Y ) 2) – (M(X + Y )) 2 = M(X 2 + 2XY + Y 2 ) - (MX + MY ) 2 = =M(X ) 2 +2МХ МY +M(Y 2)-(M(X ) 2 +2МХ МY +M(Y ) 2)= M(X 2)-(MX ) 2 +M(Y 2)- (MY ) 2 = = DX +DY .

Следствие 14.21. Дисперсия суммы нескольких независимых случайных величин равна сумме их дисперсий.

Теорема 14.22. Дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность p) 2 =). Отсюда D +2 ,

Задание 1 . Плотность распределения непрерывной случайной величины Х имеет вид:
Найти:
а) параметр A ;
б) функцию распределения F(x) ;
в) вероятность попадания случайной величины X в интервал ;
г) математическое ожидание MX и дисперсию DX .
Построить график функций f(x) и F(x) .

Задание 2 . Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3 . Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4 . Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x) .

Задача . Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x).

Найдем функцию плотности распределения, как производную от функции распределения.
F′=f(x)=a
Зная, что найдем параметр a:

или 3a=1, откуда a = 1/3
Параметр b найдем из следующих свойств:
F(4) = a*4 + b = 1
1/3*4 + b = 1 откуда b = -1/3
Следовательно, функция распределения имеет вид: F(x) = (x-1)/3

Математическое ожидание .


Дисперсия .

1 / 9 4 3 - (1 / 9 1 3) - (5 / 2) 2 = 3 / 4
Найдем вероятность того, что случайная величина примет значение в интервале
P(2 < x< 3) = F(3) – F(2) = (1/3*3 - 1/3) - (1/3*2 - 1/3) = 1/3

Пример №1 . Задана плотность распределения вероятностей f(x) непрерывной случайной величины X . Требуется:

  1. Определить коэффициент A .
  2. найти функцию распределения F(x) .
  3. схематично построить графики F(x) и f(x) .
  4. найти математическое ожидание и дисперсию X .
  5. найти вероятность того, что X примет значение из интервала (2;3).
f(x) = A*sqrt(x), 1 ≤ x ≤ 4.
Решение :

Случайная величина Х задана плотностью распределения f(x):


Найдем параметр A из условия:



или
14/3*A-1 = 0
Откуда,
A = 3 / 14


Функцию распределения можно найти по формуле.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Пример 2.1. Случайная величина X задана функцией распределения

Найти вероятность того, что в результате испытания X примет значения, заключенные в промежутке (2,5; 3,6).

Решение: Х в промежуток (2,5; 3,6) можно определить двумя способами:

Пример 2.2. При каких значениях параметров А и В функция F (x ) = A + Be - x может быть функцией распределения для неотрицательных значений случайной величины Х .

Решение: Так как все возможные значения случайной величины Х принадлежат интервалу , то для того, чтобы функция была функцией распределения для Х , должно выполняться свойство:

.

Ответ: .

Пример 2.3. Случайная величина X задана функцией распределения

Найти вероятность того, что в результате четырех независимых испытаний величина X ровно 3 раза примет значение, принадлежащее интервалу (0,25;0,75).

Решение: Вероятность попадания величины Х в промежуток (0,25;0,75) найдем по формуле:

Пример 2.4. Вероятность попадания мячом в корзину при одном броске равна 0,3. Составить закон распределения числа попаданий при трех бросках.

Решение: Случайная величина Х – число попаданий в корзину при трех бросках – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х

Х :

Пример 2.5. Два стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна 0,5, вторым – 0,4. Составить закон распределения числа попаданий в мишень.

Решение: Найдем закон распределения дискретной случайной величины Х – числа попаданий в мишень. Пусть событие – попадание в мишень первым стрелком, а – попадание вторым стрелком, и - соответственно их промахи.



Составим закон распределения вероятностей СВ Х :

Пример 2.6. Испытываются 3 элемента, работающих независимо друг от друга. Длительности времени (в часах) безотказной работы элементов имеют функции плотности распределения: для первого: F 1 (t ) =1-e - 0,1 t , для второго: F 2 (t ) = 1-e - 0,2 t , для третьего: F 3 (t ) =1-e - 0,3 t . Найти вероятность того, что в интервале времени от 0 до 5 часов: откажет только один элемент; откажут только два элемента; откажут все три элемента.

Решение: Воспользуемся определением производящей функции вероятностей :

Вероятность того, что в независимых испытаниях, в первом из которых вероятность появления события А равна , во втором и т. д., событие А появится ровно раз, равна коэффициенту при в разложении производящей функции по степеням . Найдем вероятности отказа и неотказа соответственно первого, второго и третьего элемента в интервале времени от 0 до 5 часов:

Составим производящую функцию:

Коэффициент при равен вероятности того, что событие А появится ровно три раза, то есть вероятности отказа всех трех элементов; коэффициент при равен вероятности того, что откажут ровно два элемента; коэффициент при равен вероятности того, что откажет только один элемент.

Пример 2.7. Дана плотность вероятности f (x )случайной величины X :

Найти функцию распределения F(x).

Решение: Используем формулу:

.

Таким образом, функция распределения имеет вид:

Пример 2.8. Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте.

Решение: Случайная величина Х – число элементов, отказавших в одном опыте – может принимать значения: 0, 1, 2, 3. Вероятности того, что Х примет эти значения, найдем по формуле Бернулли:

Таким образом, получаем следующий закон распределения вероятностей случайной величины Х :

Пример 2.9. В партии из 6 деталей имеется 4 стандартных. Наудачу отобраны 3 детали. Составить закон распределения числа стандартных деталей среди отобранных.

Решение: Случайная величина Х – число стандартных деталей среди отобранных – может принимать значения: 1, 2, 3 и имеет гипергеометрическое распределение. Вероятности того, что Х

где -- число деталей в партии;

-- число стандартных деталей в партии;

число отобранных деталей;

-- число стандартных деталей среди отобранных.

.

.

.

Пример 2.10. Случайная величина имеет плотность распределения

причем и не известны, но , а и . Найдите и .

Решение: В данном случае случайная величина X имеет треугольное распределение (распределение Симпсона) на отрезке [a, b ]. Числовые характеристики X :

Следовательно, . Решая данную систему, получим две пары значений: . Так как по условию задачи , то окончательно имеем: .

Ответ: .

Пример 2.11. В среднем по 10% договоров страховая компания выплачивает страховые суммы в связи с наступлением страхового случая. Вычислить математическое ожидание и дисперсию числа таких договоров среди наудачу выбранных четырех.

Решение: Математическое ожидание и дисперсию можно найти по формулам:

.

Возможные значения СВ (число договоров (из четырех) с наступлением страхового случая): 0, 1, 2, 3, 4.

Используем формулу Бернулли, чтобы вычислить вероятности различного числа договоров (из четырех), по которым были выплачены страховые суммы:

.

Ряд распределения СВ (число договоров с наступлением страхового случая) имеет вид:

0,6561 0,2916 0,0486 0,0036 0,0001

Ответ: , .

Пример 2.12. Из пяти роз две белые. Составить закон распределения случайной величины, выражающей число белых роз среди двух одновременно взятых.

Решение: В выборке из двух роз может либо не оказаться белой розы, либо может быть одна или две белые розы. Следовательно, случайная величина Х может принимать значения: 0, 1, 2. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число роз;

-- число белых роз;

число одновременно взятых роз;

-- число белых роз среди взятых.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.13. Среди 15 собранных агрегатов 6 нуждаются в дополнительной смазке. Составить закон распределения числа агрегатов, нуждающихся в дополнительной смазке, среди пяти наудачу выбранных из общего числа.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 0, 1, 2, 3, 4, 5 и имеет гипергеометрическое распределение. Вероятности того, что Х примет эти значения, найдем по формуле:

где -- число собранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке;

число выбранных агрегатов;

-- число агрегатов, нуждающихся в дополнительной смазке среди выбранных.

.

.

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Пример 2.14. Из поступивших в ремонт 10 часов 7 нуждаются в общей чистке механизма. Часы не рассортированы по виду ремонта. Мастер, желая найти часы, нуждающиеся в чистке, рассматривает их поочередно и, найдя такие часы, прекращает дальнейший просмотр. Найти математическое ожидание и дисперсию числа просмотренных часов.

Решение: Случайная величина Х – число агрегатов, нуждающихся в дополнительной смазке среди пяти выбранных – может принимать значения: 1, 2, 3, 4. Вероятности того, что Х примет эти значения, найдем по формуле:

.

.

.

.

Тогда закон распределения случайной величины будет такой:

Теперь вычислим числовые характеристики величины :

Ответ: , .

Пример 2.15. Абонент забыл последнюю цифру нужного ему номера телефона, однако помнит, что она нечетная. Найти математическое ожидание и дисперсию числа сделанных им наборов номера телефона до попадания на нужный номер, если последнюю цифру он набирает наудачу, а набранную цифру в дальнейшем не набирает.

Решение: Случайная величина может принимать значения: . Так как набранную цифру абонент в дальнейшем не набирает, то вероятности этих значений равны .

Составим ряд распределения случайной величины:

0,2

Вычислим математическое ожидание и дисперсию числа попыток набора номера:

Ответ: , .

Пример 2.16. Вероятность отказа за время испытаний на надежность для каждого прибора серии равна p . Определить математическое ожидание числа приборов, давших отказ, если испытанию подверглись N приборов.

Решение: Дискретная случайная величина X - число отказавших приборов в N независимых испытаниях, в каждом из которых вероятность появления отказа равна p, распределена по биномиальному закону. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Пример 2.17. Дискретная случайная величина X принимает 3 возможных значения: с вероятностью ; с вероятностью и с вероятностью . Найти и , зная, что M(X ) = 8.

Решение: Используем определения математического ожидания и закона распределения дискретной случайной величины:

Находим: .

Пример 2.18. Отдел технического контроля проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание случайной величины X – числа партий, в каждой из которых содержится ровно 4 стандартных изделия, если проверке подлежат 50 партий.

Решение: В данном случае все проводимые опыты независимы, а вероятности того, что в каждой партии содержится ровно 4 стандартных изделия, одинаковы, следовательно, математическое ожидание можно определить по формуле:

,

где - число партий;

Вероятность того, что в партии содержится ровно 4 стандартных изделия.

Вероятность найдем по формуле Бернулли:

Ответ: .

Пример 2.19. Найти дисперсию случайной величины X – числа появлений события A в двух независимых испытаниях, если вероятности появления события в этих испытаниях одинаковы и известно, что M (X ) = 0,9.

Решение: Задачу можно решить двумя способами.

1) Возможные значения СВ X : 0, 1, 2. По формуле Бернулли определим вероятности этих событий:

, , .

Тогда закон распределения X имеет вид:

Из определения математического ожидания определим вероятность :

Найдем дисперсию СВ X :

.

2) Можно использовать формулу:

.

Ответ: .

Пример 2.20. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины X соответственно равны 20 и 5. Найти вероятность того, что в результате испытания X примет значение, заключенное в интервале (15; 25).

Решение: Вероятность попадания нормальной случайной величины Х на участок от до выражается через функцию Лапласа:

Пример 2.21. Дана функция:

При каком значении параметра C эта функция является плотностью распределения некоторой непрерывной случайной величины X ? Найти математическое ожиданий и дисперсию случайной величины X .

Решение: Для того, чтобы функция была плотностью распределения некоторой случайной величины , она должна быть неотрицательна, и она должна удовлетворять свойству:

.

Следовательно:

Вычислим математическое ожидание по формуле:

.

Вычислим дисперсию по формуле:

T равна p . Необходимо найти математическое ожидание и дисперсию этой случайной величины.

Решение: Закон распределения дискретной случайной величины X - числа появлений события в независимых испытаниях, в каждом из которых вероятность появления события равна , называют биномиальным. Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события А одном испытании:

.

Пример 2.25. Производится три независимых выстрела по мишени. Вероятность попадания при каждом выстреле равна 0.25. Определить среднее квадратическое отклонение числа попаданий при трех выстрелах.

Решение: Так как производится три независимых испытания, и вероятность появления события А (попадания) в каждом испытании одинакова, то будем считать, что дискретная случайная величина X - число попаданий в мишень – распределена по биномиальному закону.

Дисперсия биномиального распределения равна произведению числа испытаний на вероятности появления и непоявления события в одном испытании:

Пример 2.26. Среднее число клиентов, посещающих страховую компанию за 10 мин., равно трем. Найти вероятность того, что в ближайшие 5 минут придет хотя бы один клиент.

Среднее число клиентов, пришедших за 5 минут: . .

Пример 2.29. Время ожидания заявки в очереди на процессор подчиняется показательному закону распределения со средним значением 20 секунд. Найти вероятность того, что очередная (произвольная) заявка будет ожидать процессор более 35 секунд.

Решение: В этом примере математическое ожидание , а интенсивность отказов равна .

Тогда искомая вероятность:

Пример 2.30. Группа студентов в количестве 15 человек проводит собрание в зале, в котором 20 рядов по 10 мест в каждом. Каждый студент занимает место в зале случайным образом. Какова вероятность того, что не более трех человек будут находиться на седьмом месте ряда?

Решение:

Пример 2.31.

Тогда согласно классическому определению вероятности:

где -- число деталей в партии;

-- число нестандартных деталей в партии;

число отобранных деталей;

-- число нестандартных деталей среди отобранных.

Тогда закон распределения случайной величины будет такой.

Примеры решения задач на тему «Случайные величины».

Задача 1 . В лотерее выпущено 100 билетов. Разыгрывался один выигрыш в 50 у.е. и десять выигрышей по 10 у.е. Найти закон распределения величины X – стоимости возможного выигрыша.

Решение. Возможные значения величины X: x 1 = 0; x 2 = 10 и x 3 = 50. Так как «пустых» билетов – 89, то p 1 = 0,89, вероятность выигрыша 10 у.е. (10 билетов) – p 2 = 0,10 и для выигрыша 50 у.е. – p 3 = 0,01. Таким образом:

0,89

0,10

0,01

Легко проконтролировать: .

Задача 2. Вероятность того, что покупатель ознакомился заранее с рекламой товара равна 0,6 (р=0,6 ). Осуществляется выборочный контроль качества рекламы путем опроса покупателей до первого, изучившего рекламу заранее. Составить ряд распределения количества опрошенных покупателей.

Решение. Согласно условию задачи р = 0,6. Откуда: q=1 -p = 0,4. Подставив данные значения, получим: и построим ряд распределения:

p i

0,24

Задача 3. Компьютер состоит из трех независимо работающих элементов: системного блока, монитора и клавиатуры. При однократном резком повышении напряжения вероятность отказа каждого элемента равна 0,1. Исходя из распределения Бернулли составить закон распределения числа отказавших элементов при скачке напряжения в сети.

Решение. Рассмотрим распределение Бернулли (или биномиальное): вероятность того, что в n испытаниях событие А появится ровно k раз: , или:

qn

pn

В ернёмся к задаче.

Возможные значения величины X (число отказов):

x 0 =0 – ни один из элементов не отказал;

x 1 =1 – отказ одного элемента;

x 2 =2 – отказ двух элементов;

x 3 =3 – отказ всех элементов.

Так как, по условию, p = 0,1, то q = 1 – p = 0,9. Используя формулу Бернулли, получим

, ,

, .

Контроль: .

Следовательно, искомый закон распределения:

0,729

0,243

0,027

0,001

Задача 4 . Произведено 5000 патронов. Вероятность того, что один патрон бракованный . Какова вероятность того, что во всей партии будет ровно 3 бракованных патрона?

Решение. Применим распределение Пуассона : это распределение используется для определения вероятности того, что при очень большом

количестве испытаний (массовые испытания), в каждом из которых вероятность события A очень мала, событие A наступитk раз: , где .

Здесь n = 5000, p = 0,0002, k = 3. Находим , тогда искомая вероятность: .

Задача 5 . При стрельбе до первого попадания с вероятностью попадания p = 0,6 при выстреле надо найти вероятность того, что попадание произойдет при третьем выстреле.

Решение. Применим геометрическое распределение: пусть производятся независимые испытания, в каждом из которых событие A имеет вероятность появления p (и непоявления q = 1 – p). Испытания заканчиваются, как только произойдет событие A.

При таких условиях вероятность того, что событие A произойдет на k-ом испытании, определяется по формуле: . Здесь p = 0,6; q = 1 – 0,6 = 0,4;k = 3. Следовательно, .

Задача 6 . Пусть задан закон распределения случайной величины X:

Найти математическое ожидание.

Решение. .

Заметим, что вероятностный смысл математического ожидания – это среднее значение случайной величины.

Задача 7 . Найти дисперсию случайной величины X со следующим законом распределения:

Решение. Здесь .

Закон распределения квадрата величины X 2 :

X2

Искомая дисперсия: .

Дисперсия характеризует меру отклонения (рассеяния) случайной величины от её математического ожидания.

Задача 8 . Пусть случайная величина задается распределением:

10м

Найти её числовые характеристики.

Решение: м, м 2 ,

М 2 , м.

Про случайную величину X можно сказать либо – ее математическое ожидание 6,4 м с дисперсией 13,04 м 2 , либо – ее математическое ожидание 6,4 м с отклонением м. Вторая формулировка, очевидно, нагляднее.

Задача 9. Случайная величина X задана функцией распределения:
.

Найти вероятность того, что в результате испытания величина X примет значение, заключенное в интервале .

Решение. Вероятность того, что X примет значение из заданного интервала, равно приращению интегральной функции в этом интервале, т.е. . В нашем случае и , поэтому

.

Задача 10. Дискретная случайная величина X задана законом распределения:

Найти функцию распределения F (x ) и построить ее график.

Решение. Так как функция распределения,

для , то

при ;

при ;

при ;

при ;

Соответствующий график:


Задача 11. Непрерывная случайная величина X задана дифференциальной функцией распределения: .

Найти вероятность попадания X в интервал

Решение. Заметим, что это частный случай показательного закона распределения.

Воспользуемся формулой: .

Задача 12. Найти числовые характеристики дискретной случайной величины X, заданной законом распределения:

–5

X 2 :

X 2

. , где – функция Лапласа.

Значения этой функции находятся с помощью таблицы.

В нашем случае: .

По таблице находим: , следовательно: