Пример неполярной ковалентной связи. Ковалентная связь полярная и неполярная. Ковалентная связь, полярная и неполярная, особенности, формулы и схемы

Ковалентная связь осуществляется за счёт обобществления электронов, принадлежащих обоим участвующим во взаимодействии атомам. Электроотрицательности неметаллов достаточно велики, поэтому передачи электронов не происходит.

Электроны, находящиеся на перекрывающихся электронных орбиталях, поступают в общее пользование. При этом создаётся ситуация, при которой внешние электронные уровни атомов оказываются заполненными, то есть образуется 8-ми или 2-х электронная внешняя оболочка.

Состояние, при котором электронная оболочка заполнена полностью, характеризуется наименьшей энергией, а соответственно, и максимальной устойчивостью.

Механизмов образования два:

  1. донорно-акцепторный;
  2. обменный.

В первом случае один из атомов предоставляет свою пару электронов, а второй - свободную электронную орбиталь.

Во втором - в общую пару приходит по одному электрону от каждого участника взаимодействия.

В зависимости от того, к какому типу относятся - атомному или молекулярному, соединения с подобным видом связи могут значительно различаться по физико-химическим характеристикам.

Молекулярные вещества чаще всего газы, жидкость или твёрдые вещества с низкими температурами плавления и кипения, неэлектропроводные, обладающие малой прочностью. К ним можно отнести: водород (H 2), кислород (O 2), азот (N 2), хлор (Cl 2), бром (Br 2), ромбическую серу (S 8), белый фосфор (P 4) и другие простые вещества; диоксид углерода (CO 2), диоксид серы (SO 2), оксид азота V (N 2 O 5), воду (H 2 O), хлороводород (HCl), фтороводород (HF), аммиак (NH 3), метан (CH 4), этиловый спирт (C 2 H 5 OH), органические полимеры и другие.

Вещества атомные существуют в виде прочных кристаллов, имеющих высокие температуры кипения и плавления, не растворимы в воде и прочих растворителях, многие не проводят электрический ток. Как пример можно привести алмаз, который обладает исключительной прочностью. Это объясняется тем, что алмаз представляет собой кристалл, состоящий из атомов углерода, соединённых ковалентными связями. В алмазе нет отдельных молекул. Также атомным строением обладают такие вещества, как графит, кремний (Si), диоксид кремния (SiO 2), карбид кремния (SiC) и другие.

Ковалентные связи могут быть не только одинарными (как в молекуле хлора Cl2), но также двойные, как в молекуле кислорода О2, или тройные, как, например, в молекуле азота N2. При этом тройные имеют большую энергию и более прочны, чем двойные и одинарные.

Ковалентная связь может быть образована как между двумя атомами одного элемента (неполярная), так и между атомами различных химических элементов (полярная).

Указать формулу соединения с ковалентной полярной связью не представляет труда, если сравнить значения электроотрицательностей, входящих в состав молекул атомов. Отсутствие разницы в электроотрицательности определит неполярность. Если же разница есть, то молекула будет полярна.

Не пропустите: механизм образования , конкретные примеры.

Ковалентная неполярная химическая связь

Характерна для простых веществ неметаллов . Электроны принадлежат атомам в равной степени, и смещения электронной плотности не происходит.

Примером могут служить следующие молекулы:

H2, O2, О3, N2, F2, Cl2.

Исключением являются инертные газы . Их внешний энергетический уровень заполнен полностью, и образование молекул им энергетически не выгодно, в связи с чем они существуют в виде отдельных атомов.

Также примером веществ с неполярной ковалентной связью будет, например, РН3. Несмотря на то, что вещество состоит из различных элементов, значения электроотрицательностей элементов фактически не различаются, а значит, смещения электронной пары происходить не будет.

Ковалентная полярная химическая связь

Рассматривая ковалентную полярную связь, примеров можно привести множество: HCl, H2O, H2S, NH3, CH4, CO2, SO3, CCl4, SiO2, СО.

образуется между атомами неметаллов с различной электроотрицательностью. При этом ядро элемента с большей электроотрицательностью притягивает общие электроны ближе к себе.

Схема образования ковалентной полярной связи

В зависимости от механизма образования общими могут становиться электроны одного из атомов или обоих .

На картинке наглядно представлено взаимодействие в молекуле соляной кислоты.

Пара электронов принадлежит и одному атому, и второму, у обоих, таким образом, внешние уровни заполнены. Но более электроотрицательный хлор притягивает пару электронов чуть ближе к себе (при этом она остаётся общей). Разница в электроотрицательности недостаточно большая, чтобы пара электронов перешла к одному из атомов полностью. В результате возникает частичный отрицательный заряд у хлора и частичный положительный у водорода. Молекула HCl является полярной молекулой.

Физико-химические свойства связи

Связь можно охарактеризовать следующими свойствами : направленность, полярность, поляризуемость и насыщаемость.

Благодаря которой образуются молекулы неорганических и органических веществ. Химическая связь появляется при взаимодействии электрических полей, которые создаются ядрами и электронами атомов. Следовательно, образование ковалентной химической связи связано с электрической природой.

Что такое связь

Под этим термином подразумевают результат действия двух либо более атомов, которые приводят к формированию прочной многоатомной системы. Основные виды химической связи образуются при уменьшении энергии реагирующих атомов. В процессе формирования связи атомы стараются завершить свою электронную оболочку.

Виды связи

В химии выделяют несколько видов связи: ионной, ковалентной, металлической. Ковалентная химическая связь имеет две разновидности: полярная, неполярная.

Каков механизм ее создания? Ковалентная неполярная химическая связь образуется между атомами одинаковых неметаллов, имеющих одну электроотрицательность. При этом образуются общие электронные пары.

Неполярная связь

Среди примеров молекул, у которых ковалентная химическая связь неполярного вида, можно назвать галогены, водород, азот, кислород.

Впервые эта связь была обнаружена в 1916 году американским химиком Льюисом. Сначала им была выдвинута гипотеза, а подтверждена она была только после экспериментального подтверждения.

Ковалентная химическая связь связана с электроотрицательностью. У неметаллов она имеет высокое значение. В ходе химического взаимодействия атомов не всегда возможен перенос электронов от одного атома к другому, в результате осуществляется их объединение. Между атомами появляется подлинная ковалентная химическая связь. 8 класс обычной школьной программы предполагает детальное рассмотрение нескольких видов связи.

Вещества, имеющие данный вид связи, при нормальных условиях - жидкости, газы, а также твердые вещества, имеющие невысокую температуру плавления.

Типы ковалентной связи

Подробнее остановимся на данном вопросе. Какие выделяют типы химической связи? Ковалентная связь существует в обменном, донорно-акцепторном вариантах.

Первый тип характеризуется отдачей каждым атомом одного неспаренного электрона на образование общей электронной связи.

Электроны, объединяемые в общую связь, должны обладать противоположными спинами. В качестве примера подобного вида ковалентной связи можно рассмотреть водород. При сближении его атомов наблюдается проникновение их электронных облаков друг в друга, именуемое в науке перекрыванием электронных облаков. В результате увеличивается электронная плотность между ядрами, а энергия системы понижается.

При минимальном расстоянии ядра водорода отталкиваются, в итоге образуется некое оптимальное расстояние.

В случае донорно-акцепторного типа ковалентной связи у одной частицы есть электроны, ее называют донором. Вторая частица имеет свободную ячейку, в которой будет размещаться пара электронов.

Полярные молекулы

Как образуются ковалентные полярные химические связи? Они возникают в тех ситуациях, когда у связываемых атомов неметаллов различная электроотрицательность. В подобных случаях обобществленные электроны размещаются ближе к тому атому, у которого значение электроотрицательности выше. В качестве примера ковалентной полярной связи могут рассматриваться связи, которые возникают в молекуле бромоводорода. Здесь общественные электроны, которые отвечают за формирование ковалентной связи, ближе находятся к брому, чем к водороду. Причина подобного явления в том, что у брома электроотрицательность выше, чем у водорода.

Способы определения ковалентной связи

Как определить ковалентные полярные химические связи? Для этого необходимо знать состав молекул. Если в ней присутствуют атомы разных элементов, в молекуле существует ковалентная полярная связь. В неполярных молекулах присутствуют атомы одного химического элемента. Среди тех заданий, которые предлагаются в рамках школьного курса химии, есть и такие, которые предполагают выявление вида связи. Задания подобного типа включены в задания итоговой аттестации по химии в 9 классе, а также в тесты единого государственного экзамена по химии в 11 классе.

Ионная связь

Чем отличается ковалентная и ионная химическая связь? Если ковалентная связь характерна для неметаллов, то ионная связь образуется между атомами, имеющими существенные отличия по электроотрицательности. К примеру, это характерно для соединений элементов первой и второй групп главных подгрупп ПС (щелочных и щелочноземельных металлов) и элементов 6 и 7 групп главных подгрупп таблицы Менделеева (халькогенов и галогенов).

Она формируется в результате электростатического притяжения ионов, обладающих противоположными зарядами.

Особенности ионной связи

Так как силовые поля противоположно заряженных ионов распределяются равномерно во всех направлениях, каждый из них способен притягивать к себе противоположные по знаку частицы. Это и характеризует ненаправленность ионной связи.

Взаимодействие двух ионов, обладающих противоположными знаками, не предполагает полной взаимной компенсации индивидуальных силовых полей. Это способствует сохранению способности притягивать по остальным направлениям ионы, следовательно, наблюдается ненасыщенность ионной связи.

В ионном соединении у каждого иона есть возможность притягивать к себе некое число других, обладающих противоположных знаком, чтобы сформировать кристаллическую решетку ионного характера. В таком кристалле не существует молекул. Каждый ион окружается в веществе неким конкретным числом ионов иного знака.

Металлическая связь

Данный вид химической связи обладает определенными индивидуальными особенностями. Металлы имеют избыточное количество валентных орбиталей при недостатке электронов.

При сближении отдельных атомов происходит перекрывание их валентных орбиталей, что способствует свободному перемещению электронов из одной орбитали в другую, осуществляя между всеми атомами металла связь. Эти свободные электроны и являются основным признаком металлической связи. Она не обладает насыщенностью и направленностью, поскольку валентные электроны распределяются по кристаллу равномерно. Присутствие в металлах свободных электронов объясняет их некоторые физические свойства: металлический блеск, пластичность, ковкость, теплопроводность, непрозрачность.

Разновидность ковалентной связи

Она образуется между атомом водорода и элементом, который имеет высокую электроотрицательность. Существуют внутри- и межмолекулярные водородные связи. Эта разновидность ковалентной связи является самой непрочной, она появляется благодаря действию электростатических сил. У атома водорода небольшой радиус, и при смещении либо отдаче этого одного электрона водород становится положительным ионом, действующим на атом с большой электроотрицательностью.

Среди характерных свойств ковалентной связи выделяют: насыщаемость, направленность, поляризуемость, полярность. Каждый из этих показателей имеет определенное значение для образуемого соединения. К примеру, направленность обуславливается геометрической формой молекулы.

Идея об образовании химической связи с помощью пары электронов, принадлежащих обоим соединяющимся атомам, была высказана в 1916г американским физико-химиком Дж. Льюисом.

Ковалентная связь существует между атомами как в молекулах, так и в кристаллах. Она возникает как между одинаковыми атомами (например, в молекулах Н 2 , Cl 2 , О 2 , в кристалле алмаза), так и между разными атомами (например, в молекулах Н 2 О и NН 3 , в кристаллах SiC). Почти все связи в молекулах органических соединений являются ковалентными (С-С, С-Н, С-N, и др.).

Различают два механизма образования ковалентной связи:

1) обменный;

2) донорно-акцепторный.

Обменный механизм образования ковалентной связи заключается в том, что каждый из соединяющихся атомов предоставляет на образование общей электронной пары (связи) по одному неспаренному электрону. Электроны взаимодействующих атомов должны при этом иметь противоположные спины.

Рассмотрим для примера образование ковалентной связи в молекуле водорода . При сближении атомов водорода происходит проникновение их электронных облаков друг в друга, которое называется перекрыванием электронных облаков (рис. 3.2), электронная плотность между ядрами возрастает. Ядра притягиваются друг к другу. Вследствие этого снижается энергия системы. При очень сильном сближении атомов возрастает отталкивание ядер. Поэтому имеется оптимальное расстояние между ядрами (длина связи l), при котором система имеет минимальную энергию. При таком состоянии выделяется энергия, называемая энергией связи Е св.

Рис. 3.2. Схема перекрывания электронных облаков при образовании молекулы водорода

Схематично образование молекулы водорода из атомов можно представить следующим образом (точка означает электрон , черта - пару электронов):

Н + Н→Н: Н или Н + Н→Н - Н.

В общем виде для молекул АВ других веществ:

А + В = А: В.

Донорно-акцепторный механизм образования ковалентной связи заключается в том, что одна частица - донор - представляет на образование связи электронную пару, а вторая - акцептор - свободную орбиталь:

А: +  В = А: В.

донор акцептор

Рассмотрим механизмы образования химических связей в молекуле аммиака и ионе аммония .

1. Образование

Атом азота имеет на внешнем энергетическом уровне два спаренных и три неспаренных электрона:

Атом водорода на s - подуровне имеет один неспаренный электрон.


В молекуле аммиака неспаренные 2р - электроны атома азота образуют три электронные пары с электронами 3-х атомов водорода:

.

В молекуле NH 3 образованы 3 ковалентных связи по обменному механизму.

2. Образование комплексного иона - иона аммония.

NH 3 + HCl = NH 4 Cl или NH 3 + H + = NH 4 +

У атома азота остается неподелённая пара электронов , т. е. два электрона с антипараллельными спинами на одной атомной орбитали. Атомная орбиталь иона водорода не содержит электронов (вакантная орбиталь). При сближении молекулы аммиака и иона водорода происходит взаимодействие неподеленной пары электронов атома азота и вакантной орбитали иона водорода. Неподеленная пара электронов становится общей для атомов азота и водорода, возникает химическая связь по донорно - акцепторному механизму. Атом азота молекулы аммиака является донором, а ион водорода - акцептором:

.

Следует отметить, что в ионе NH 4 + все четыре связи равноценны и неразличимы, следовательно, в ионе заряд делокализован (рассредоточен) по всему комплексу.

Рассмотренные примеры показывают, что способность атома образовывать ковалентные связи обусловливается не только одноэлектронными, но и 2-электронными облаками или наличием свободных орбиталей.

По донорно-акцепторному механизму образуются связи в комплексных соединениях: - ; 2+ ; 2- и т. д.

Ковалентная связь обладает следующими свойствами:

- насыщаемость;

- направленность;

- полярность и поляризуемость.

Ковалентная связь (от латинского «со» совместно и «vales» имеющий силу) осуществляется за счет электронной пары, принадлежащей обоим атомам. Образуется между атомами неметаллов.

Электроотрицательность неметаллов довольно велика, так что при химическом взаимодействии двух атомов неметаллов полный перенос электронов от одного к другому (как в случае ) невозможен. В этом случае для выполнения необходимо объединение электронов.

В качестве примера обсудим взаимодействие атомов водорода и хлора:

H 1s 1 — один электрон

Cl 1s 2 2s 2 2 p 6 3 s 2 3 p 5 — семь электронов на внешнем уровне

Каждому из двух атомов недостает по одному электрону для того, чтобы иметь завершенную внешнюю электронную оболочку. И каждый из атомов выделяет „в общее пользование” по одному электрону. Тем самым правило октета оказывается выполненным. Лучше всего изобра­жать это с помощью формул Льюиса:

Образование ковалентной связи

Обобществленные электроны принадлежат теперь обоим атомам. Атом водорода имеет два электрона (свой собственный и обобществленный электрон атома хлора), а атом хлора - восемь электронов (свои плюс обобществленный электрон атома водорода). Эти два обобществленных электрона образуют ковалентную связь между атомами водорода и хло­ра. Образовавшаяся при связывании двух атомов частица называется молекулой.

Неполярная ковалентная связь

Ковалентная связь может образоваться и между двумя одинаковы­ми атомами. Например:

Эта схема объясняет, почему водород и хлор существуют в виде двухатомных молекул. Благодаря спариванию и обобществлению двух элек­тронов удается выполнить правило октета для обоих атомов.

Помимо одинарных связей может образовываться двойная или тройная ковалентная связь, как, например, в молекулах кислорода О 2 или азота N 2 . Атомы азота имеют по пять валентных электронов, следовательно, для завершения оболочки требуется еще по три электро­на. Это достигается обобществлением трех пар электронов, как показано ниже:

Ковалентные соединения — обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Полярная ковалентная связь

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).


В таблице ниже перечислены основные типы связей и примеры веществ:


Обменный и донорно-акцепторный механизм образования ковалентной связи

1) Обменный механизм. Каждый атом дает по одному неспаренному электрону в общую электронную пару.

2) Донорно-акцепторный механизм. Один атом (донор) предоставляет электронную пару, а другой атом (акцептор) предоставляет для этой пары свободную орбиталь.


Далеко не последнюю роль на химическом уровне организации мира играет способ связи структурных частиц, соединения между собой. Подавляющее число простых веществ, а именно неметаллов, имеют ковалентный неполярный тип связи, за исключением Металлы в чистом виде имею особый способ связи, который реализуется с помощью обобществления свободных электронов в кристаллической решетке.

Виды и примеры которых будут указаны ниже, а точнее, локализация или частичное смещение этих связей к одному из участников связывания, объясняется именно электроотрицательной характеристикой того или иного элемента. Смещение происходит к тому атому, у которого она сильнее.

Ковалентная неполярная связь

«Формула» ковалентной неполярной связи проста - два атома одинаковой природы объединяют в совместную пару электроны своих валентных оболочек. Такая пара называется поделённой потому, что в равной степени принадлежит обоим участникам связывания. Именно благодаря обобществлению электронной плотности в виде пары электронов, атомы переходят в более стабильное состояние, так как завершают свой внешний электронный уровень, а «октет» (или «дуплет» в случае простого вещества водорода Н 2 , у него единственная s-орбиталь, для завершения которой нужно два электрона) - это состояние внешнего уровня, к которому стремятся все атомы, так как его заполнение соответствует состоянию с минимальной энергией.

Пример неполярной ковалентной связи есть в неорганике и, как бы странно это ни звучало, но и в органической химии тоже. Такой тип связи присущ всем простым веществам - неметаллам, кроме благородных газов, так как валентный уровень атома инертного газа уже завершен и имеет октет электронов, а значит, связывание с подобным себе для него не имеет смысла и даже менее энергетически выгодно. В органике неполярность встречается в отдельных молекулах определённой структуры и носит условный характер.

Ковалентная полярная связь

Пример неполярной ковалентной связи ограничивается несколькими молекулами простого вещества, в то время как соединений диполей, в которых электронная плотность частично смещена в сторону более электроотрицательного элемента, - подавляющее большинство. Любое соединение атомов с разной величиной электроотрицательности даёт полярную связь. В частности, связи в органике - это ковалентные полярные связи. Иногда ионные, неорганические оксиды также являются полярными, а в солях и кислотах преобладает ионный тип связывания.

Как крайний случай полярного связывания иногда рассматривают и ионный тип соединений. В случае если электроотрицательность одного из элементов значительно выше, чем у другого, электронная пара полностью сдвигается от центра связи к нему. Так происходит разделение на ионы. Тот, кто забирает электронную пару, превращается в анион и получает отрицательный заряд, а теряющий электрон - превращается в катион и становиться положительным.

Примеры неорганических веществ с ковалентным неполярным типом связи

Вещества с ковалентной неполярной связью - это, например, все бинарные молекулы газов: водород (Н - Н), кислород (О = О), азот (в его молекуле 2 атома связаны тройной связью (N ≡ N)); жидкостей и твёрдых веществ: хлора (Cl - Cl), фтор (F - F), бром (Br - Br), йод (I - I). А также сложные вещества, состоящие из атомов различных элементов, но с фактическим одинаковым значением электроотрицательности, например, гидрид фосфора - РН 3 .

Органика и неполярное связывание

Предельно ясно, что все сложные. Встаёт вопрос, как же в сложном веществе может быть неполярная связь? Ответ довольно прост, если немного логически поразмыслить. Если значения электроотрицательности связанных элементов различаются незначительно и не создают в соединении, такую связь можно считать неполярной. Именно такая ситуация с углеродом и водородом: все С - Н связи в органике считаются неполярными.

Пример неполярной ковалентной связи - молекула метана, простейшего Она состоит из одного атома углерода, который, согласно своей валентности, связан одинарными связями с четырьмя атомами водорода. По сути, молекула не является диполем, так как в ней нет локализации зарядов, в чем-то и за счёт тетраэдрического строения. Электронная плотность распределена равномерно.

Пример неполярной ковалентной связи есть и в более сложных органических соединениях. Реализуется он за счёт мезомерных эффектов, то есть последовательного оттягивания электронной плотности, которое быстро угасает по углеродной цепи. Так, в молекуле гексахлорэтана связь С - С неполярная за счёт равномерного оттягивания электронной плотности шестью атомами хлора.

Прочие типы связей

Кроме ковалентной связи, которая, кстати, может осуществляться и по донорно-акцепторному механизму, имеют место ионная, металлическая и водородная связи. Краткие характеристики предпоследних двух представлены выше.

Водородная связь - это межмолекулярное электростатическое взаимодействие, которое наблюдается, если в молекуле есть атом гидрогена и любой другой, имеющий неподелённые электронные пары. Этот тип связывания гораздо слабее, чем остальные, но за счёт того, что в веществе этих связей может образоваться очень много, вносит значительный вклад в свойства соединения.