Basic trigonometric identities. Sum and difference of sines and cosines: derivation of formulas, examples

- surely there will be tasks in trigonometry. Trigonometry is often disliked for having to cram a huge amount of difficult formulas teeming with sines, cosines, tangents and cotangents. The site already once gave advice on how to remember a forgotten formula, using the example of the Euler and Peel formulas.

And in this article we will try to show that it is enough to firmly know only five of the simplest trigonometric formulas, and to have about the rest general idea and take them out as you go. It's like with DNA: they are not stored in a molecule complete drawings finished living being. It contains, rather, instructions for assembling it from the available amino acids. So in trigonometry, knowing some general principles, we will get all the necessary formulas from a small set of those that must be kept in mind.

We will rely on the following formulas:

From the formulas for the sine and cosine of the sums, knowing that the cosine function is even and that the sine function is odd, substituting -b for b, we obtain formulas for the differences:

  1. Sine of difference: sin(a-b) = sinacos(-b)+cosasin(-b) = sinacosb-cosasinb
  2. cosine difference: cos(a-b) = cosacos(-b)-sinasin(-b) = cosacosb+sinasinb

Putting a \u003d b into the same formulas, we obtain the formulas for the sine and cosine of double angles:

  1. Sine of a double angle: sin2a = sin(a+a) = sinacosa+cosasina = 2sinacosa
  2. Cosine of a double angle: cos2a = cos(a+a) = cosacosa-sinasina = cos2a-sin2a

The formulas for other multiple angles are obtained similarly:

  1. Sine of a triple angle: sin3a = sin(2a+a) = sin2acosa+cos2asina = (2sinacosa)cosa+(cos2a-sin2a)sina = 2sinacos2a+sinacos2a-sin 3 a = 3 sinacos2a-sin 3 a = 3 sina(1-sin2a)-sin 3 a = 3 sina-4sin 3a
  2. Cosine of a triple angle: cos3a = cos(2a+a) = cos2acosa-sin2asina = (cos2a-sin2a)cosa-(2sinacosa)sina = cos 3a- sin2acosa-2sin2acosa = cos 3a-3 sin2acosa = cos 3 a-3(1- cos2a)cosa = 4cos 3a-3 cosa

Before moving on, let's consider one problem.
Given: the angle is acute.
Find its cosine if
Solution given by one student:
Because , That sina= 3,a cosa = 4.
(From mathematical humor)

So, the definition of tangent connects this function with both sine and cosine. But you can get a formula that gives the connection of the tangent only with the cosine. To derive it, we take the basic trigonometric identity: sin 2 a+cos 2 a= 1 and divide it by cos 2 a. We get:

So the solution to this problem would be:

(Because the angle is acute, the + sign is taken when extracting the root)

The formula for the tangent of the sum is another one that is hard to remember. Let's output it like this:

immediately output and

From the cosine formula for a double angle, you can get the sine and cosine formulas for a half angle. To do this, to the left side of the double angle cosine formula:
cos2 a = cos 2 a-sin 2 a
we add a unit, and to the right - a trigonometric unit, i.e. sum of squares of sine and cosine.
cos2a+1 = cos2a-sin2a+cos2a+sin2a
2cos 2 a = cos2 a+1
expressing cosa through cos2 a and performing a change of variables, we get:

The sign is taken depending on the quadrant.

Similarly, subtracting one from the left side of the equality, and the sum of the squares of the sine and cosine from the right side, we get:
cos2a-1 = cos2a-sin2a-cos2a-sin2a
2sin 2 a = 1-cos2 a

And finally, to convert the sum of trigonometric functions into a product, we use the following trick. Suppose we need to represent the sum of sines as a product sina+sinb. Let's introduce variables x and y such that a = x+y, b+x-y. Then
sina+sinb = sin(x+y)+ sin(x-y) = sin x cos y+ cos x sin y+ sin x cos y- cos x sin y=2 sin x cos y. Let us now express x and y in terms of a and b.

Since a = x+y, b = x-y, then . That's why

You can withdraw immediately

  1. Partition formula products of sine and cosine V amount: sinacosb = 0.5(sin(a+b)+sin(a-b))

We recommend that you practice and derive formulas for converting the product of the difference of sines and the sum and difference of cosines into a product, as well as for splitting the products of sines and cosines into a sum. Having done these exercises, you will thoroughly master the skill of deriving trigonometric formulas and will not get lost even in the most difficult control, olympiad or testing.

I will not convince you not to write cheat sheets. Write! Including cheat sheets on trigonometry. Later I plan to explain why cheat sheets are needed and how cheat sheets are useful. And here - information on how not to teach, but remember some trigonometric formulas. So - trigonometry without a cheat sheet! We use associations for memorization.

1. Addition formulas:

cosines always "go in pairs": cosine-cosine, sine-sine. And one more thing: cosines are “inadequate”. They “everything is wrong”, so they change the signs: “-” to “+”, and vice versa.

Sinuses - "mix": sine-cosine, cosine-sine.

2. Sum and difference formulas:

cosines always "go in pairs". Having added two cosines - "buns", we get a pair of cosines - "koloboks". And subtracting, we definitely won’t get koloboks. We get a couple of sines. Still with a minus ahead.

Sinuses - "mix" :

3. Formulas for converting a product into a sum and a difference.

When do we get a pair of cosines? When adding the cosines. That's why

When do we get a pair of sines? When subtracting cosines. From here:

"Mixing" is obtained both by adding and subtracting sines. Which is more fun: adding or subtracting? That's right, fold. And for the formula take addition:

In the first and third formulas in brackets - the amount. From the rearrangement of the places of the terms, the sum does not change. The order is important only for the second formula. But, in order not to get confused, for ease of remembering, in all three formulas in the first brackets we take the difference

and secondly, the sum

Crib sheets in your pocket give peace of mind: if you forget the formula, you can write it off. And they give confidence: if you fail to use the cheat sheet, the formulas can be easily remembered.

The concepts of sine, cosine, tangent and cotangent are the main categories of trigonometry - a branch of mathematics, and are inextricably linked with the definition of an angle. Owning this mathematical science requires memorization and understanding of formulas and theorems, as well as a developed spatial thinking. That is why trigonometric calculations often cause difficulties for schoolchildren and students. To overcome them, you should become more familiar with trigonometric functions and formulas.

Concepts in trigonometry

To understand the basic concepts of trigonometry, you must first decide what is right triangle and the angle in a circle, and why all the basic trigonometric calculations are associated with them. A triangle in which one of the angles is 90 degrees is a right triangle. Historically, this figure was often used by people in architecture, navigation, art, astronomy. Accordingly, studying and analyzing the properties of this figure, people came to the calculation of the corresponding ratios of its parameters.

The main categories associated with right triangles are the hypotenuse and the legs. The hypotenuse is the side of a triangle that is opposite right angle. The legs, respectively, are the other two sides. The sum of the angles of any triangle is always 180 degrees.

Spherical trigonometry is a section of trigonometry that is not studied at school, but in applied sciences such as astronomy and geodesy, scientists use it. A feature of a triangle in spherical trigonometry is that it always has a sum of angles greater than 180 degrees.

Angles of a triangle

In a right triangle, the sine of an angle is the ratio of the leg opposite the desired angle to the hypotenuse of the triangle. Accordingly, the cosine is the ratio of the adjacent leg and the hypotenuse. Both of these values ​​always have a value less than one, since the hypotenuse is always longer than the leg.

The tangent of an angle is a value, equal to the ratio opposite leg to the adjacent leg of the desired angle, or sine to cosine. The cotangent, in turn, is the ratio of the adjacent leg of the desired angle to the opposite cactet. The cotangent of an angle can also be obtained by dividing the unit by the value of the tangent.

unit circle

A unit circle in geometry is a circle whose radius is equal to one. Such a circle is constructed in the Cartesian coordinate system, with the center of the circle coinciding with the point of origin, and the initial position of the radius vector is determined by the positive direction of the X axis (abscissa axis). Each point of the circle has two coordinates: XX and YY, that is, the coordinates of the abscissa and ordinate. Selecting any point on the circle in the XX plane, and lowering the perpendicular from it to the abscissa axis, we get a right triangle formed by a radius to the selected point (let us denote it by the letter C), a perpendicular drawn to the X axis (the intersection point is denoted by the letter G), and a segment the abscissa axis between the origin (the point is denoted by the letter A) and the intersection point G. The resulting triangle ACG is a right triangle inscribed in a circle, where AG is the hypotenuse, and AC and GC are the legs. The angle between the radius of the circle AC and the segment of the abscissa axis with the designation AG, we define as α (alpha). So, cos α = AG/AC. Given that AC is the radius of the unit circle, and it is equal to one, it turns out that cos α=AG. Similarly, sin α=CG.

In addition, knowing these data, it is possible to determine the coordinate of point C on the circle, since cos α=AG, and sin α=CG, which means that point C has the given coordinates (cos α; sin α). Knowing that the tangent is equal to the ratio of the sine to the cosine, we can determine that tg α \u003d y / x, and ctg α \u003d x / y. Considering angles in a negative coordinate system, one can calculate that the sine and cosine values ​​of some angles can be negative.

Calculations and basic formulas


Values ​​of trigonometric functions

Having considered the essence of trigonometric functions through the unit circle, we can derive the values ​​of these functions for some angles. The values ​​are listed in the table below.

The simplest trigonometric identities

Equations in which under the sign of the trigonometric function there is unknown value are called trigonometric. Identities with the value sin x = α, k is any integer:

  1. sin x = 0, x = πk.
  2. 2. sin x \u003d 1, x \u003d π / 2 + 2πk.
  3. sin x \u003d -1, x \u003d -π / 2 + 2πk.
  4. sin x = a, |a| > 1, no solutions.
  5. sin x = a, |a| ≦ 1, x = (-1)^k * arcsin α + πk.

Identities with the value cos x = a, where k is any integer:

  1. cos x = 0, x = π/2 + πk.
  2. cos x = 1, x = 2πk.
  3. cos x \u003d -1, x \u003d π + 2πk.
  4. cos x = a, |a| > 1, no solutions.
  5. cos x = a, |a| ≦ 1, х = ±arccos α + 2πk.

Identities with the value tg x = a, where k is any integer:

  1. tg x = 0, x = π/2 + πk.
  2. tg x \u003d a, x \u003d arctg α + πk.

Identities with value ctg x = a, where k is any integer:

  1. ctg x = 0, x = π/2 + πk.
  2. ctg x \u003d a, x \u003d arcctg α + πk.

Cast formulas

This category of constant formulas denotes methods by which you can go from trigonometric functions of the form to functions of the argument, that is, convert the sine, cosine, tangent and cotangent of an angle of any value to the corresponding indicators of the angle of the interval from 0 to 90 degrees for greater convenience of calculations.

The formulas for reducing functions for the sine of an angle look like this:

  • sin(900 - α) = α;
  • sin(900 + α) = cos α;
  • sin(1800 - α) = sin α;
  • sin(1800 + α) = -sin α;
  • sin(2700 - α) = -cos α;
  • sin(2700 + α) = -cos α;
  • sin(3600 - α) = -sin α;
  • sin(3600 + α) = sin α.

For the cosine of an angle:

  • cos(900 - α) = sin α;
  • cos(900 + α) = -sin α;
  • cos(1800 - α) = -cos α;
  • cos(1800 + α) = -cos α;
  • cos(2700 - α) = -sin α;
  • cos(2700 + α) = sin α;
  • cos(3600 - α) = cos α;
  • cos(3600 + α) = cos α.

The use of the above formulas is possible subject to two rules. First, if the angle can be represented as a value (π/2 ± a) or (3π/2 ± a), the value of the function changes:

  • from sin to cos;
  • from cos to sin;
  • from tg to ctg;
  • from ctg to tg.

The value of the function remains unchanged if the angle can be represented as (π ± a) or (2π ± a).

Secondly, the sign of the reduced function does not change: if it was initially positive, it remains so. The same is true for negative functions.

Addition Formulas

These formulas express the values ​​of the sine, cosine, tangent and cotangent of the sum and difference of two angles of rotation through their trigonometric functions. Angles are usually denoted as α and β.

The formulas look like this:

  1. sin(α ± β) = sin α * cos β ± cos α * sin.
  2. cos(α ± β) = cos α * cos β ∓ sin α * sin.
  3. tan(α ± β) = (tan α ± tan β) / (1 ∓ tan α * tan β).
  4. ctg(α ± β) = (-1 ± ctg α * ctg β) / (ctg α ± ctg β).

These formulas are valid for any angles α and β.

Double and triple angle formulas

The trigonometric formulas of a double and triple angle are formulas that relate the functions of the angles 2α and 3α, respectively, to the trigonometric functions of the angle α. Derived from addition formulas:

  1. sin2α = 2sinα*cosα.
  2. cos2α = 1 - 2sin^2α.
  3. tg2α = 2tgα / (1 - tg^2 α).
  4. sin3α = 3sinα - 4sin^3α.
  5. cos3α = 4cos^3α - 3cosα.
  6. tg3α = (3tgα - tg^3 α) / (1-tg^2 α).

Transition from sum to product

Considering that 2sinx*cosy = sin(x+y) + sin(x-y), simplifying this formula, we obtain the identity sinα + sinβ = 2sin(α + β)/2 * cos(α − β)/2. Similarly, sinα - sinβ = 2sin(α - β)/2 * cos(α + β)/2; cosα + cosβ = 2cos(α + β)/2 * cos(α − β)/2; cosα - cosβ = 2sin(α + β)/2 * sin(α − β)/2; tgα + tgβ = sin(α + β) / cosα * cosβ; tgα - tgβ = sin(α - β) / cosα * cosβ; cosα + sinα = √2sin(π/4 ∓ α) = √2cos(π/4 ± α).

Transition from product to sum

These formulas follow from the identities for the transition of the sum to the product:

  • sinα * sinβ = 1/2*;
  • cosα * cosβ = 1/2*;
  • sinα * cosβ = 1/2*.

Reduction formulas

In these identities, the square and cubic powers of the sine and cosine can be expressed in terms of the sine and cosine of the first power of a multiple angle:

  • sin^2 α = (1 - cos2α)/2;
  • cos^2α = (1 + cos2α)/2;
  • sin^3 α = (3 * sinα - sin3α)/4;
  • cos^3 α = (3 * cosα + cos3α)/4;
  • sin^4 α = (3 - 4cos2α + cos4α)/8;
  • cos^4 α = (3 + 4cos2α + cos4α)/8.

Universal substitution

The universal trigonometric substitution formulas express trigonometric functions in terms of the tangent of a half angle.

  • sin x \u003d (2tgx / 2) * (1 + tg ^ 2 x / 2), while x \u003d π + 2πn;
  • cos x = (1 - tg^2 x/2) / (1 + tg^2 x/2), where x = π + 2πn;
  • tg x \u003d (2tgx / 2) / (1 - tg ^ 2 x / 2), where x \u003d π + 2πn;
  • ctg x \u003d (1 - tg ^ 2 x / 2) / (2tgx / 2), while x \u003d π + 2πn.

Special cases

Special cases of the simplest trigonometric equations are given below (k is any integer).

Private for sine:

sin x value x value
0 pk
1 π/2 + 2πk
-1 -π/2 + 2πk
1/2 π/6 + 2πk or 5π/6 + 2πk
-1/2 -π/6 + 2πk or -5π/6 + 2πk
√2/2 π/4 + 2πk or 3π/4 + 2πk
-√2/2 -π/4 + 2πk or -3π/4 + 2πk
√3/2 π/3 + 2πk or 2π/3 + 2πk
-√3/2 -π/3 + 2πk or -2π/3 + 2πk

Cosine quotients:

cos x value x value
0 π/2 + 2πk
1 2πk
-1 2 + 2πk
1/2 ±π/3 + 2πk
-1/2 ±2π/3 + 2πk
√2/2 ±π/4 + 2πk
-√2/2 ±3π/4 + 2πk
√3/2 ±π/6 + 2πk
-√3/2 ±5π/6 + 2πk

Private for tangent:

tg x value x value
0 pk
1 π/4 + πk
-1 -π/4 + πk
√3/3 π/6 + πk
-√3/3 -π/6 + πk
√3 π/3 + πk
-√3 -π/3 + πk

Cotangent quotients:

ctg x value x value
0 π/2 + πk
1 π/4 + πk
-1 -π/4 + πk
√3 π/6 + πk
-√3 -π/3 + πk
√3/3 π/3 + πk
-√3/3 -π/3 + πk

Theorems

Sine theorem

There are two versions of the theorem - simple and extended. Simple theorem sinuses: a/sin α = b/sin β = c/sin γ. In this case, a, b, c are the sides of the triangle, and α, β, γ are the opposite angles, respectively.

Extended sine theorem for an arbitrary triangle: a/sin α = b/sin β = c/sin γ = 2R. In this identity, R denotes the radius of the circle in which the given triangle is inscribed.

Cosine theorem

The identity is displayed in this way: a^2 = b^2 + c^2 - 2*b*c*cos α. In the formula, a, b, c are the sides of the triangle, and α is the angle opposite side a.

Tangent theorem

The formula expresses the relationship between the tangents of two angles, and the length of the sides opposite them. The sides are labeled a, b, c, and the corresponding opposite angles are α, β, γ. The formula of the tangent theorem: (a - b) / (a+b) = tg((α - β)/2) / tg((α + β)/2).

Cotangent theorem

Associates the radius of a circle inscribed in a triangle with the length of its sides. If a, b, c are the sides of a triangle, and A, B, C, respectively, are their opposite angles, r is the radius of the inscribed circle, and p is the half-perimeter of the triangle, the following identities hold:

  • ctg A/2 = (p-a)/r;
  • ctg B/2 = (p-b)/r;
  • ctg C/2 = (p-c)/r.

Applications

Trigonometry is not only a theoretical science associated with mathematical formulas. Its properties, theorems and rules are used in practice by various branches of human activity - astronomy, air and sea navigation, music theory, geodesy, chemistry, acoustics, optics, electronics, architecture, economics, mechanical engineering, measuring work, computer graphics, cartography, oceanography, and many others.

Sine, cosine, tangent and cotangent are the basic concepts of trigonometry, with which you can mathematically express the relationship between angles and lengths of sides in a triangle, and find the desired quantities through identities, theorems and rules.


In this article, we will talk about universal trigonometric substitution. It involves the expression of the sine, cosine, tangent and cotangent of any angle through the tangent of a half angle. Moreover, such a replacement is carried out rationally, that is, without roots.

First, we write formulas expressing the sine, cosine, tangent and cotangent in terms of the tangent of a half angle. Next, we show the derivation of these formulas. And in conclusion, let's look at several examples of using the universal trigonometric substitution.

Page navigation.

Sine, cosine, tangent and cotangent through the tangent of a half angle

First, let's write down four formulas expressing the sine, cosine, tangent and cotangent of an angle in terms of the tangent of a half angle.

These formulas are valid for all angles at which the tangents and cotangents included in them are defined:

Derivation of formulas

Let us analyze the derivation of formulas expressing the sine, cosine, tangent and cotangent of an angle through the tangent of a half angle. Let's start with the formulas for sine and cosine.

We represent the sine and cosine using the double angle formulas as And respectively. Now expressions And write as fractions with denominator 1 as And . Further, on the basis of the main trigonometric identity, we replace the units in the denominator with the sum of the squares of the sine and cosine, after which we obtain And . Finally, we divide the numerator and denominator of the resulting fractions by (its value is different from zero, provided ). As a result, the whole chain of actions looks like this:


And

This completes the derivation of formulas expressing the sine and cosine through the tangent of a half angle.

It remains to derive the formulas for the tangent and cotangent. Now, taking into account the formulas obtained above, and the formulas and , we immediately obtain formulas expressing the tangent and cotangent through the tangent of a half angle:

So, we have derived all the formulas for the universal trigonometric substitution.

Examples of using the universal trigonometric substitution

First, let's consider an example of using universal trigonometric substitution when converting expressions.

Example.

Give an expression to an expression containing only one trigonometric function.

Solution.

Answer:

.

Bibliography.

  • Algebra: Proc. for 9 cells. avg. school / Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova; Ed. S. A. Telyakovsky.- M.: Enlightenment, 1990.- 272 p.: ill.- isbn 5-09-002727-7
  • Bashmakov M.I. Algebra and the beginning of analysis: Proc. for 10-11 cells. avg. school - 3rd ed. - M.: Enlightenment, 1993. - 351 p.: ill. - ISBN 5-09-004617-4.
  • Algebra and the beginning of the analysis: Proc. for 10-11 cells. general education institutions / A. N. Kolmogorov, A. M. Abramov, Yu. P. Dudnitsyn and others; Ed. A. N. Kolmogorova.- 14th ed.- M.: Enlightenment, 2004.- 384 p.: ill.- ISBN 5-09-013651-3.
  • Gusev V. A., Mordkovich A. G. Mathematics (a manual for applicants to technical schools): Proc. allowance.- M.; Higher school, 1984.-351 p., ill.

In this article, we will take a comprehensive look at . Main trigonometric identities are equalities that establish a relationship between the sine, cosine, tangent and cotangent of one angle, and allow you to find any of these trigonometric functions through a known other.

We immediately list the main trigonometric identities, which we will analyze in this article. We write them down in a table, and below we give the derivation of these formulas and give the necessary explanations.

Page navigation.

Relationship between sine and cosine of one angle

Sometimes they talk not about the main trigonometric identities listed in the table above, but about one single basic trigonometric identity kind . The explanation for this fact is quite simple: the equalities are obtained from the basic trigonometric identity after dividing both of its parts by and respectively, and the equalities And follow from the definitions of sine, cosine, tangent, and cotangent. We will discuss this in more detail in the following paragraphs.

That is, it is the equality that is of particular interest, which was given the name of the main trigonometric identity.

Before proving the basic trigonometric identity, we give its formulation: the sum of the squares of the sine and cosine of one angle is identically equal to one. Now let's prove it.

The basic trigonometric identity is very often used in transformation trigonometric expressions . It allows the sum of the squares of the sine and cosine of one angle to be replaced by one. No less often, the basic trigonometric identity is used in reverse order: the unit is replaced by the sum of the squares of the sine and cosine of any angle.

Tangent and cotangent through sine and cosine

Identities connecting the tangent and cotangent with the sine and cosine of one angle of the form and immediately follow from the definitions of sine, cosine, tangent and cotangent. Indeed, by definition, the sine is the ordinate of y, the cosine is the abscissa of x, the tangent is the ratio of the ordinate to the abscissa, that is, , and the cotangent is the ratio of the abscissa to the ordinate, that is, .

Due to this obviousness of the identities and often the definitions of tangent and cotangent are given not through the ratio of the abscissa and the ordinate, but through the ratio of the sine and cosine. So the tangent of an angle is the ratio of the sine to the cosine of this angle, and the cotangent is the ratio of the cosine to the sine.

To conclude this section, it should be noted that the identities and hold for all such angles for which the trigonometric functions in them make sense. So the formula is valid for any other than (otherwise the denominator will be zero, and we did not define division by zero), and the formula - for all , different from , where z is any .

Relationship between tangent and cotangent

An even more obvious trigonometric identity than the previous two is the identity connecting the tangent and cotangent of one angle of the form . It is clear that it takes place for any angles other than , otherwise either the tangent or the cotangent is not defined.

Proof of the formula very simple. By definition and from where . The proof could have been carried out in a slightly different way. Since and , That .

So, the tangent and cotangent of one angle, at which they make sense, is.