Практическое пособие по химии. Проекционные формулы Фишера Проекционная формула фишера r глицеринового альдегида

DL-номенклатура

Глицериновый альдегид имеет один центр оптической изомерии, так как у него один асимметричный атом углерода. Следовательно, альдегид может существовать в виде двух оптических изомеров.

Изомер, вращающийся вправо Фишер обозначил буквой $D$, вращающийся влево – $L$. Полученные из $D$-изомера глицеринового альдегида углеводы были отнесены к $D$-ряду , а углеводы, полученные из $L$-изомера отнесены к $L$-ряду.

$DL$-номенклатура широко применяется в наши дни при обозначении энантиомеров углеводов и аминокислот. К $D$-ряду принадлежат все природные углеводы, к $L$-ряду – все природные аминокислоты.

Проекционные формулы Фишера

В 1891 году Э. Фишером было предложено пространственное строение соединений представлять в виде проекций.

Для создания проекционных формул Фишера тетраэдр разворачивают таким образом, чтобы две связи, находящиеся в горизонтальной плоскости, были направлены к наблюдателю, а две связи, лежащие в вертикальной плоскости, располагались от наблюдателя.

Например, для $L$-глицеринового альдегида проекционная формула Фишера имеет вид

Так как тетраэдр можно рассматривать с разных сторон, одна модель может представить 12 внешне разных формул Фишера.

Формулы Фишера являются проекциями на плоскость, поэтому при их построении вводятся правила:


Во время взаимных перестановок двух групп в формулах Фишера возможно превращение энантиомера в его зеркальное отражение:

Если хиральность молекулы связана с плоскостью или осью, то проекции Фишера применять нельзя. В таких случаях пользуются трехмерными моделями.

Проекции Фишера для молекул с несколькими центрами оптической изомерии

Центры оптической изомерии могут иметь разное геометрическое строение, которое можно изобразить при помощи проекционных формул Фишера:

В молекуле винной кислоты есть два потенциальных центра оптической изомерии – два атома углерода, к которым присоединены четыре разные группы.

При построении проекционной формулы молекула винной кислоты вытягивается в вертикальную цепочку. Связи ориентированные вертикально уходят за плоскость рисунка, а расположенные горизонтально направлены к наблюдателю.

Для винной кислоты возможно существование трех изомеров (зеркальное отражение четвертого изомера совмещается с третьим). (+)- и (-)-Винные кислоты (А и Б соответственно) являются энантиомерами, то есть оптическими изомерами. У них одинаковы температуры плавления, растворимость в воде.

Третий изомер можно получить из (+)- или (-)-винной кислоты в результате обращения одного асимметричного центра. В результате получается мезо-форма (В), физические свойства которой будут отличаться от свойств энантиомеров винной кислоты.

По отношению к (+)- и (-)-винной кислоте мезо-форма является диастереомером.

При сокристаллизации (+)- и (-)-изомеров винной кислоты в равных количествах образуется рацемат, отличающийся от чистых изомеров физико – химическими свойствами.

Проекция трёхмерной молекулы на плоскость

Проекция Фишера (проекционная формула Фишера , формула Фишера ) - способ изображения трёхмерной молекулы в виде проекции , в которой вертикальные связи удаляются за проекционную плоскость, а горизонтальные связи выступают перед этой плоскостью . Данные формулы были предложены Э. Фишером в 1891 году для изображения структур углеводов . Использование проекций Фишера для неуглеводных молекул может ввести в заблуждение и не рекомендуется ИЮПАК .

Построение

В проекции Фишера химические связи изображаются в виде горизонтальных и вертикальных линий, на перекрестьях которых находятся стереоцентры. Углеродный скелет изображают вертикально, при этом сверху находится атом углерода, с которого начинается нумерация скелета (например, альдегидный -атом для альдоз). Кроме того, в проекции Фишера все горизонтальные связи направлены в сторону наблюдателя, а вертикальные - удалены от наблюдателя. Данное условие важно для правильного построения проекции Фишера, а также при восстановлении трёхмерной структуры молекулы из её проекции. По этой причине проекцию Фишера нельзя вращать на 90° или 270°, так как это приведёт к изменению конфигурации стереоцентров. Согласно рекомендациям ИЮПАК, атомы водорода следует изображать в явном виде, однако структуры без атомов водорода также считаются приемлемыми .

Восстановление трёхмерной записи

Для восстановления пространственной формы молекулы из проекции Фишера необходимо горизонтальные связи изобразить направленными в сторону наблюдателя (жирными клинышками), а вертикальные - уходящими за плоскость изображения (штриховыми клинышками). Далее можно изобразить молекулу в любом трёхмерном представлении.

Использование

Проекции Фишера наиболее широко используются для построения структурных формул моносахаридов , а также аминокислот . Они также лежат в основе d/l -номенклатуры, используемой для различения энантиомеров этих природных соединений.

Тетраэдрическую модель одного из энантиомеров (рис. 10) располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа - сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра должны быть направлены к наблюдателю.

Рис. 10. Построение проекционной формулы Фишера (+)-молочной кислоты

После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.

Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному, не только так, как показано на рис. 7. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи - за плоскость рисунка.

Полученные таким образом проекции можно с помощью несложных преобразований привести к стандартному виду, в котором углеродная цепь расположена вертикально, а старшая группа (в молочной кислоте это СООН) - сверху. Преобразования разрешают две операции:

В проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);

Проекционную формулу разрешается поворачивать в плоскости рисунка на 180° (что эквивалентно двум перестановкам), но не на 90°.

Тетраэдрическую модель строения органических соединений предложили Я.Г.Вант-Гофф и Ж.А.Ле-Бель в 1874 г. Они пришли к выводу, что если две молекулы являются стереоизомерами, то их можно описать зеркальными формулами, и если один изомер вращает плоскость поляризации влево, то второй должен вращать вправо. По знаку вращения можно определить относительную конфигурацию стереоизомеров. Однако между абсолютной конфигурацией , т.е. истинным расположением групп вокруг данного хирального центра, и знаком вращения прямого соответствия нет. Определить абсолютную конфигурацию химическими методами, если не известна абсолютная конфигурация хотя бы одного хирального реагента (а так и было вначале), невозможно. Спектральные методы могут дать информацию только об относительной конфигурации. В настоящее время существуют лишь два метода независимого определения абсолютной конфигурации: теоретический расчет и исследование аномальной дифракции рентгеновских лучей на ядрах тяжелых элементов.

Но в конце XIX - начале XX века этих методов не существовало и поэтому химики придумали следующий выход. Решили взять в качестве стандарта какое-нибудь одно соединение и произвольно приписать ему одну из возможных абсолютных конфигураций. Выбор пал на глицериновый альдегид по той причине, что он структурно связан с сахарами, которые в то время изучал Эмиль Фишер. (+) - Изомеру была приписана абсолютная конфигурация и он был обозначен буквой D (dextriogyrus - правый), а соответствующий (-) - изомер - буквой L (laevogyrus - левый). Как только был выбран стандарт, стало возможным соотносить с ним конфигурацию других соединений. Например, при окислении с помощью HgO (+)-глицериновый альдегид дает (-)-глицериновую кислоту. Данная реакция не затрагивает асимметричский атом, поэтому очень мало вероятно, чтобы его конфигурация изменилась, и следовательно (-)-глицериновая кислота относится к D - ряду.

Отнесение к D- или L-ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией D- или L-глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у L-глицеринового альдегида, поэтому энантиомер (I) относят к L-ряду. Из тех же соображений энантиомер (II) относят к D-ряду. Так из сравнения проекций Фишера определяют относительнуюконфигурацию.

При изображении стереоизомеров часто пользуются формулами Фишера. В этих формулах хиральный центр рисуют с четырьмя связями, образующими друг с другом прямые углы. Вертикальные линии изображают проекцию на плоскость заместителей, находящихся за плоскостью, в то время как горизонтальные линии - это проекция заместителей, находящихся перед плоскостью. Символ асимметрического атома углерода в проекционных формулах Фишера принято опускать.

До 1951 г. установление абсолютной конфигурации было невозможно. Розанов в 1906 г предложил использовать в качестве относительного стандарта правовращающий (+) глицериновый альдегид, которому произвольно приписали конфигурацию D. Левовращающий антипод обозначили буквой L.

D-глицериновый альдегид L-глицериновый альдегид

В формулах Фишера самая длинная углеродная цепь записывается вертикально с атомом углерода №1 наверху; вертикальные связи асимметрического атома углерода располагаются за плоскостью чертежа, а горизонтальные над плоскостью.

D-молочная кислота L-молочная кислота

Если в проекции Фишера поменять местами две соседние группы, то получим зеркальное изображение исходного соединения. Зеркальное изображение начальной структуры получается и при повороте проекции Фишера на 90 о.

2.4.4 σ-Диастереоизомерия

В виде диастереомеров могут существовать соединения, молекулы которых имеют два и более стереоцентров. С увеличением числа асимметрических атомов углерода число стереоизомеров увеличивается с появлением каждого нового стереоцентра и может быть вычислено по формуле N = 2 n , где n – число стереоцентров. Молекулы с двумя асимметрическими атомами углерода могут существовать в виде четырех стереоизомеров. Например, в молекуле 2,3-дибромпентана имеется два стереоцентра и, следовательно, у этого соединения 4 стереоизомера.

2,3-дибромпентан

(2S,3R)-2,3-дибромпентан (2R,3S)-2,3-ди… (2S,3S)-2,3-ди… (23,3R)-2,3-ди…

(I) (II) (III) (IV)




Пары стереоизомеров (I) и (II), также (III) и (IV) относятся друг к другу как предмет и несовместимое с ним зеркальное изображение, т.е. являются парами энантиомеров. Стереоизомеры в любых других парах являются диастереомерами. Две различные конфигурации одной молекулы, но не являющиеся энантиомерами, называются диастереомерами. Два диастереомера различаются по всем свойствам и сравнительно легко разделяются, как два различных соединения.

В проекционных формулах (I) и (II) одинаковые лиганды находятся по одну сторону проекции, такие стереоизомеры называют эритро -формами. В формулах (III) и (IV) эти же лиганды находятся по разные стороны вертикальной линии проекции Фишера, соответствующие им соединения называют трео -формами.

А. Мезо-соединения

У структуры с двумя стереоцентрами не всегда может быть 4 стереоизомера. Например, у 2,3-дибромбутана имеется два стереоцентра, но не 4 а только 3 стереоизомера.

(2S,3R)-2,3-дибромбутан (2S,3S)-2,3-ди… (2R,3R)-2,3-ди…

мезо- форма

Нумеровать атомы 2,3-дибромбутана можно сверху вниз или снизу вверх и тогда видно, что первые две структуры изображают один и тот же стереоизомер. Этот стереоизомер ахирален и оптически не активен, т. к. имеет плоскость симметрии

Упр. 7. Изобразите формулы Фишера пространственных изомеров: (а) глицеринового альдегида (2,3-дигидроксипропаналя), (б) молочной (2-гидроксипропа-новой) кислоты, (в) яблочной (2-гидроксибутандиовой или гидроксиянтарной) кислоты, (г) винной (2,3-дигидроксибутандиовой или дигидроксиянтарной) кислоты.

2.4.5 -Диастереомеры

Алкены и их производные с общей формулой ABC=CDE могут существовать в виде -диастереомеров. -Диастереомеры возникают при условии неидентичности лигандов, связанных с отдельными атомами углерода двойной связи. -Диастерео-меры отличаются друг от друга различным расположением лигандов относительно проскости симметрии -связи.

О заместителях, расположенных по одну сторону от двойной связи, говорят, что они находятся в цис -положении относительно друг друга; если они расположены по разные стороны от плоскости двойной связи, то это транс -положение. В последнее время вместо терминов цис- и транс - рекомендуется Z,E-система. Если две наиболее старшие группы (по системе Кана-Ингольда-Прелога) расположены по одну сторону от -связи, то конфигурация заместителей обозначается символом Z, если же эти группы находятся по разные стороны от плоскости -связи, то конфигурация обозначается символом Е.

Таким образом, мы обсудили два вида диастереоизомерии:

Диастереоизомерия возникающая в результате комбинации элементов хиральности (в этом случае диастереоизомерия и энантиомерия накладываются друг на друга);

Диастереоизомерия цис-транс -изомеров.

Вещества, способные поворачивать плоскость поляризации проходящего через них света, называют оптически активными . Само это явление называется оптической активностью . Оптичеcки активные вещества существуют в виде пар оптических антиподов или энантиомеров , которые отличаются (при прочих равных условиях - одинаковой концентрации, одинаковой длиной пробега светового луча в веществе) знаком поворота плоскости поляризации света.

Молекулы оптически активных веществ обладают свойством хиральности - энантиомеры относятся друг к другу как оригинал и его зеркальное отражение (несовместимы ни при каком повороте). Чаще всего для возникновения хиральности необходимо присутствие в молекуле хирального атома углерода (хирального или асимметрического центра) - находящегося в состоянии sp 3 -гибридизации и имеющего четыре разных заместителя:

Эквимолярная смесь энантиомеров не обладает оптической активностью. Такая смесь называется рацемической смесью или рацематом .

Если молекула содержит несколько хиральных центров, изобразить ее в проекции,аналогичной предыдущему рисунку, очень трудно. В этом случае пользуются проекционными формулами Э. Фишера .

Число стереоизомеров в случае нескольких хиральных центров можно определить по формуле 2 n , где n - число хиральных атомов углерода. В случае альдотетроз, в которых два хиральных, центра существует 4 стереоизомера:


Молекулы 1 и 2, 3 и 4 представляют собой энантиомеры. Молекулы 2 и 4, 1 и 3, 2 и 3энантиомерами не являются, тем не менее это - стереоизомеры.

Стереоизомеры, не являющиеся энантиомерами, называются диастереомерами .

Диастереомеры отличаются по химическим и физическим свойствам, их можно разделить обычными химическими методами.

Число стереоизомеров может быть меньше, чем 2 n в случае существования мезоформы . Мезоформа возникает, если в молекуле имеются внутренние плоскости симметрии. Например у винной кислоты существует три стереоизомера:


Если изомеры 1 и 2 представляют собой пару энантиомеров, то 3 и 4 - это одно и то же - в молекуле есть внутренняя плоскость симметрии, показанная пунктиром. Мезоформа - это, по существу, внутримолекулярный рацемат. Действительно, верхняя часть 3 (выше пунктира) является зеркальным отражением нижней части. Оптической активностью мезоформа не обладает .

Номенклатура оптических изомеров

Первыми веществами, для которых было открыто и изучено явление оптической изомерии, были углеводы и аминокислоты. Поэтому исторически сложилось так, что стереоизомеры этих соединений определяют принадлежностью к тому или иному стерическому ряду и к эритро-трео -изомерам. Для соединений других классов используют понятие абсолютной конфигурации хирального центра.

Проекционные формулы Фишера

Формулы Фишера - это один из способов изображения на плоскости трехмерной структуры хирального центра. Возьмем пару энантиомеров и построим проекцию Фишера для правой молекулы:

Выберем направление, с которого будем рассматривать молекулу - оно показано стрелкой:

В этом случае связи С-А и С-Е направлены к нам, они, в соответствии с правилами записи формулы Фишера, изображаются горизонтальной линией. Связи C-B и C-D направлены от нас, они изображаются вертикальной линией. В результате проекция Фишера будет выглядеть как (1):

В настоящее время и вертикальная и горизонтальная линии изображаются как сплошные, атом углерода не рисуется - пересечение линий и подразумевает хиральный центр, в результате общепринятой является проекция (2).

Если рассматривать эту же молекулу с другой стороны, то можно получить еще одну проекцию Фишера:

Вообще можно нарисовать двенадцать проекций Фишера для данной молекулы. Для того, чтобы сравнить между собой полученные проекции, необходимо учесть, что проекции Фишера допускают над собой ряд преобразований.

Преобразования, сохраняющие исходную формулу

1. Четное число перестановок. Под перестановкой подразумевается обмен местами двух любых заместителей. Например, в формуле 2b можно поменять сначала D и A (первая перестановка), апотом E и D (который теперь стоит на месте А) - это будет вторая перестановка, в результате2b преобразовалось в 2. Заметно, что это - одно и то же.

2. Поворот проекции в плоскости чертежа на 180, 360, 540 и т.д. градусов:

3. Циклическая перестановка: один заместитель (любой) оставляем на месте,три оставшихся переставляем по кругу - по или против часовой стрелке. Эта операция эквивалентна двум перестановка, но иногда оказывается удобнее.

Преобразования, приводящие к энантиомеру

1. Нечетное число перестановок - меняем местами D и E - одна перестановка, с помощью зеркала, изображенного вертикальным пунктиром легко убедиться, что это - энантиомеры.

2. Поворот в плоскости чертежа на 90, 270, 450 и т.д. градусов. Повернем 2b на 90 o против часовой стрелки:

В полученной формуле сделаем четное число перестановок - поменяем местами В и Е, А и D. Сравнив2b и то, что получилось, наблюдаем, что это - энантиомер.

3. Отражение в зеркале или рассматривание "на просвет".

Стандартная проекция Фишера

В стандартной записи проекции Фишера главная цепь или цикл изображаются вертикальной линией, нумерация атомов углерода (по ИЮПАК) в цепи идет сверху вниз.