The lateral surface area of ​​the prism is Definition and properties of a prism

Prism. Parallelepiped

prism is called a polyhedron whose two faces are equal n-gons (grounds) , lying in parallel planes, and the remaining n faces are parallelograms (side faces) . Side rib prism is the side of the lateral face that does not belong to the base.

A prism whose lateral edges are perpendicular to the planes of the bases is called straight prism (Fig. 1). If the side edges are not perpendicular to the planes of the bases, then the prism is called oblique . correct A prism is a straight prism whose bases are regular polygons.

Height prism is called the distance between the planes of the bases. Diagonal A prism is a segment connecting two vertices that do not belong to the same face. diagonal section A section of a prism by a plane passing through two side edges that do not belong to the same face is called. Perpendicular section called the section of the prism by a plane perpendicular to the lateral edge of the prism.

Side surface area prism is the sum of the areas of all side faces. area full surface the sum of the areas of all the faces of the prism is called (i.e., the sum of the areas of the side faces and the areas of the bases).

For an arbitrary prism, the formulas are true:

Where l- length lateral rib;

H- height;

P

Q

S side

S full

S main is the area of ​​the bases;

V is the volume of the prism.

For a straight prism, the following formulas are true:

Where p- the perimeter of the base;

l is the length of the side rib;

H- height.

Parallelepiped A prism whose base is a parallelogram is called. A parallelepiped whose lateral edges are perpendicular to the bases is called direct (Fig. 2). If the side edges are not perpendicular to the bases, then the parallelepiped is called oblique . A right parallelepiped whose base is a rectangle is called rectangular. cuboid, in which all edges are equal, is called cube.

The faces of a parallelepiped that do not have common vertices are called opposite . The lengths of edges emanating from one vertex are called measurements parallelepiped. Since the box is a prism, its main elements are defined in the same way as they are defined for prisms.

Theorems.

1. The diagonals of the parallelepiped intersect at one point and bisect it.

2. In a rectangular parallelepiped, the square of the length of the diagonal is equal to the sum of the squares of its three dimensions:

3. All four diagonals of a rectangular parallelepiped are equal to each other.

For an arbitrary parallelepiped, the following formulas are true:

Where l is the length of the side rib;

H- height;

P is the perimeter of the perpendicular section;

Q– Area of ​​perpendicular section;

S side is the lateral surface area;

S full is the total surface area;

S main is the area of ​​the bases;

V is the volume of the prism.

For right parallelepiped correct formulas:

Where p- the perimeter of the base;

l is the length of the side rib;

H is the height of the right parallelepiped.

For a rectangular parallelepiped, the following formulas are true:

(3)

Where p- the perimeter of the base;

H- height;

d- diagonal;

a,b,c– measurements of a parallelepiped.

The correct formulas for a cube are:

Where a is the length of the rib;

d is the diagonal of the cube.

Example 1 The diagonal of a rectangular cuboid is 33 dm, and its measurements are related as 2:6:9. Find the measurements of the cuboid.

Solution. To find the dimensions of the parallelepiped, we use formula (3), i.e. the fact that the square of the hypotenuse of a cuboid is equal to the sum of the squares of its dimensions. Denote by k coefficient of proportionality. Then the dimensions of the parallelepiped will be equal to 2 k, 6k and 9 k. We write formula (3) for the problem data:

Solving this equation for k, we get:

Hence, the dimensions of the parallelepiped are 6 dm, 18 dm and 27 dm.

Answer: 6 dm, 18 dm, 27 dm.

Example 2 Find volume of oblique triangular prism, whose base is an equilateral triangle with a side of 8 cm, if the lateral edge is equal to the side of the base and is inclined at an angle of 60º to the base.

Solution . Let's make a drawing (Fig. 3).

In order to find the volume of an inclined prism, you need to know the area of ​​\u200b\u200bits base and height. The area of ​​the base of this prism is the area of ​​an equilateral triangle with a side of 8 cm. Let's calculate it:

The height of a prism is the distance between its bases. From the top A 1 of the upper base we lower the perpendicular to the plane of the lower base A 1 D. Its length will be the height of the prism. Consider D A 1 AD: since this is the angle of inclination of the side rib A 1 A to the base plane A 1 A= 8 cm. From this triangle we find A 1 D:

Now we calculate the volume using formula (1):

Answer: 192 cm3.

Example 3 The lateral edge of a regular hexagonal prism is 14 cm. The area of ​​\u200b\u200bthe largest diagonal section is 168 cm 2. Find the total surface area of ​​the prism.

Solution. Let's make a drawing (Fig. 4)


The largest diagonal section is a rectangle AA 1 DD 1 , since the diagonal AD regular hexagon ABCDEF is the largest. In order to calculate the lateral surface area of ​​a prism, it is necessary to know the side of the base and the length of the lateral rib.

Knowing the area of ​​the diagonal section (rectangle), we find the diagonal of the base.

Since , then

Since then AB= 6 cm.

Then the perimeter of the base is:

Find the area of ​​the lateral surface of the prism:

The area of ​​a regular hexagon with a side of 6 cm is:

Find the total surface area of ​​the prism:

Answer:

Example 4 The base of a right parallelepiped is a rhombus. The areas of diagonal sections are 300 cm 2 and 875 cm 2. Find the area of ​​the side surface of the parallelepiped.

Solution. Let's make a drawing (Fig. 5).

Denote the side of the rhombus by A, the diagonals of the rhombus d 1 and d 2 , the height of the box h. To find the lateral surface area of ​​a straight parallelepiped, it is necessary to multiply the perimeter of the base by the height: (formula (2)). Base perimeter p = AB + BC + CD + DA = 4AB = 4a, because ABCD- rhombus. H = AA 1 = h. That. Need to find A And h.

Consider diagonal sections. AA 1 SS 1 - a rectangle, one side of which is the diagonal of a rhombus AC = d 1 , second - side edge AA 1 = h, Then

Similarly for the section BB 1 DD 1 we get:

Using the property of a parallelogram such that the sum of the squares of the diagonals is equal to the sum of the squares of all its sides, we get the equality We get the following.

Definition. Prism- this is a polyhedron, all the vertices of which are located in two parallel planes, and in the same two planes there are two faces of the prism, which are equal polygons with, respectively parallel sides, and all edges not lying in these planes are parallel.

Two equal faces are called prism bases(ABCDE, A 1 B 1 C 1 D 1 E 1).

All other faces of the prism are called side faces(AA 1 B 1 B, BB 1 C 1 C, CC 1 D 1 D, DD 1 E 1 E, EE 1 A 1 A).

All side faces form side surface of the prism .

All side faces of a prism are parallelograms .

Edges that do not lie at the bases are called lateral edges of the prism ( AA 1, B.B. 1, CC 1, DD 1, EE 1).

Prism Diagonal a segment is called, the ends of which are two vertices of the prism that do not lie on one of its faces (AD 1).

The length of the segment connecting the bases of the prism and perpendicular to both bases at the same time is called prism height .

Designation:ABCDE A 1 B 1 C 1 D 1 E 1. (First, in the order of the bypass, the vertices of one base are indicated, and then, in the same order, the vertices of the other; the ends of each side edge are indicated by the same letters, only the vertices lying in one base are indicated by letters without an index, and in the other - with an index)

The name of the prism is associated with the number of angles in the figure lying at its base, for example, in Figure 1, the base is a pentagon, so the prism is called pentagonal prism. But since such a prism has 7 faces, then it heptahedron(2 faces are the bases of the prism, 5 faces are parallelograms, are its side faces)

Among straight prisms, a particular type stands out: regular prisms.

A straight prism is called correct, if its bases are regular polygons.

A regular prism has all side faces equal rectangles. A special case of a prism is a parallelepiped.

Parallelepiped

Parallelepiped- This is a quadrangular prism, at the base of which lies a parallelogram (oblique parallelepiped). Right parallelepiped- a parallelepiped whose lateral edges are perpendicular to the planes of the base.

cuboid- a right parallelepiped whose base is a rectangle.

Properties and theorems:


Some properties of a parallelepiped are similar to the well-known properties of a parallelogram. A rectangular parallelepiped having equal dimensions is called cube .A cube has all faces equal squares. The square of a diagonal is equal to the sum of the squares of its three dimensions

,

where d is the diagonal of the square;
a - side of the square.

The idea of ​​a prism is given by:

  • various architectural structures;
  • Kids toys;
  • packing boxes;
  • designer items, etc.





Total and lateral surface area of ​​the prism

Total surface area of ​​the prism is the sum of the areas of all its faces Lateral surface area is called the sum of the areas of its side faces. the bases of the prism are equal polygons, then their areas are equal. That's why

S full \u003d S side + 2S main,

Where S full- total surface area, S side- side surface area, S main- base area

The area of ​​the lateral surface of a straight prism is equal to the product of the perimeter of the base and the height of the prism.

S side\u003d P main * h,

Where S side is the area of ​​the lateral surface of a straight prism,

P main - the perimeter of the base of a straight prism,

h is the height of the straight prism, equal to the side edge.

Prism volume

The volume of a prism is equal to the product of the area of ​​the base and the height.

The video course "Get an A" includes all the topics necessary for a successful passing the exam in mathematics for 60-65 points. Completely all tasks 1-13 profile exam mathematics. Also suitable for passing the Basic USE in mathematics. If you want to pass the exam with 90-100 points, you need to solve part 1 in 30 minutes and without mistakes!

Preparation course for the exam for grades 10-11, as well as for teachers. Everything you need to solve part 1 of the exam in mathematics (the first 12 problems) and problem 13 (trigonometry). And this is more than 70 points on the Unified State Examination, and neither a hundred-point student nor a humanist can do without them.

All the necessary theory. Quick Ways solutions, traps and secrets of the exam. All relevant tasks of part 1 from the Bank of FIPI tasks have been analyzed. The course fully complies with the requirements of the USE-2018.

The course contains 5 large topics, 2.5 hours each. Each topic is given from scratch, simply and clearly.

Hundreds of exam tasks. Text problems and probability theory. Simple and easy to remember problem solving algorithms. Geometry. Theory, reference material, analysis of all types of USE tasks. Stereometry. Tricky solutions, useful cheat sheets, development spatial imagination. Trigonometry from scratch - to task 13. Understanding instead of cramming. Visual explanation of complex concepts. Algebra. Roots, powers and logarithms, function and derivative. Base for solution challenging tasks 2 parts of the exam.

Polyhedra

The main object of study of stereometry are three-dimensional bodies. Body is a part of space bounded by some surface.

polyhedron A body whose surface consists of a finite number of plane polygons is called. A polyhedron is called convex if it lies on one side of the plane of every flat polygon on its surface. The common part of such a plane and the surface of a polyhedron is called edge. The faces of a convex polyhedron are flat convex polygons. The sides of the faces are called edges of the polyhedron, and the vertices vertices of the polyhedron.

For example, a cube consists of six squares that are its faces. It contains 12 edges (sides of squares) and 8 vertices (vertices of squares).

The simplest polyhedra are prisms and pyramids, which we will study further.

Prism

Definition and properties of a prism

prism is called a polyhedron consisting of two flat polygons lying in parallel planes combined by parallel translation, and all segments connecting the corresponding points of these polygons. The polygons are called prism bases, and the segments connecting the corresponding vertices of the polygons are side edges of the prism.

Prism height called the distance between the planes of its bases (). A segment connecting two vertices of a prism that do not belong to the same face is called prism diagonal(). The prism is called n-coal if its base is an n-gon.

Any prism has the following properties, which follow from the fact that the bases of the prism are combined by parallel translation:

1. The bases of the prism are equal.

2. The side edges of the prism are parallel and equal.

The surface of a prism is made up of bases and lateral surface. The lateral surface of the prism consists of parallelograms (this follows from the properties of the prism). The area of ​​the lateral surface of a prism is the sum of the areas of the lateral faces.

straight prism

The prism is called straight if its side edges are perpendicular to the bases. Otherwise, the prism is called oblique.

The faces of a straight prism are rectangles. The height of a straight prism is equal to its side faces.

full prism surface is the sum of the lateral surface area and the areas of the bases.

Correct prism called a straight prism regular polygon at the base.

Theorem 13.1. The area of ​​the lateral surface of a straight prism is equal to the product of the perimeter and the height of the prism (or, equivalently, to the lateral edge).

Proof. The side faces of a straight prism are rectangles whose bases are the sides of the polygons at the bases of the prism, and the heights are the side edges of the prism. Then, by definition, the lateral surface area is:

,

where is the perimeter of the base of a straight prism.

Parallelepiped

If parallelograms lie at the bases of a prism, then it is called parallelepiped. All the faces of a parallelepiped are parallelograms. In this case, the opposite faces of the parallelepiped are parallel and equal.

Theorem 13.2. The diagonals of the parallelepiped intersect at one point and the intersection point is divided in half.

Proof. Consider two arbitrary diagonals, for example, and . Because the faces of the parallelepiped are parallelograms, then and , which means that according to T about two straight lines parallel to the third . In addition, this means that the lines and lie in the same plane (the plane). This plane intersects parallel planes and along parallel lines and . Thus, a quadrilateral is a parallelogram, and by the property of a parallelogram, its diagonals and intersect and the intersection point is divided in half, which was to be proved.

A right parallelepiped whose base is a rectangle is called cuboid. All faces of a cuboid are rectangles. The lengths of non-parallel edges of a rectangular parallelepiped are called its linear dimensions (measurements). There are three sizes (width, height, length).

Theorem 13.3. In a cuboid, the square of any diagonal is equal to the sum of the squares of its three dimensions (proved by applying Pythagorean T twice).

A rectangular parallelepiped in which all edges are equal is called cube.

Tasks

13.1 How many diagonals does n- carbon prism

13.2 In an inclined triangular prism, the distances between the side edges are 37, 13, and 40. Find the distance between the larger side face and the opposite side edge.

13.3 Through the side of the lower base of a regular triangular prism, a plane is drawn that intersects the side faces along segments, the angle between which is . Find the angle of inclination of this plane to the base of the prism.

In the school curriculum for the course of solid geometry, the study of three-dimensional figures usually begins with a simple geometric body - a prism polyhedron. The role of its bases is performed by 2 equal polygons lying in parallel planes. A special case is a regular quadrangular prism. Its bases are 2 identical regular quadrilaterals, to which the sides are perpendicular, having the shape of parallelograms (or rectangles if the prism is not inclined).

What does a prism look like

A regular quadrangular prism is a hexagon, at the bases of which there are 2 squares, and the side faces are represented by rectangles. Another name for this geometric figure- a straight parallelepiped.

A drawing showing a quadrangular prism is shown below.

You can also see in the picture the most important elements that make up a geometric body. They are commonly referred to as:

Sometimes in problems in geometry you can find the concept of a section. The definition will sound like this: a section is all points of a volumetric body that belong to the cutting plane. The section is perpendicular (crosses the edges of the figure at an angle of 90 degrees). For a rectangular prism, a diagonal section is also considered (the maximum number of sections that can be built is 2), passing through 2 edges and the diagonals of the base.

If the section is drawn in such a way that the cutting plane is not parallel to either the bases or the side faces, the result is a truncated prism.

Various ratios and formulas are used to find the reduced prismatic elements. Some of them are known from the course of planimetry (for example, to find the area of ​​the base of a prism, it is enough to recall the formula for the area of ​​a square).

Surface area and volume

To determine the volume of a prism using the formula, you need to know the area of ​​\u200b\u200bits base and height:

V = Sprim h

Since the base of a regular tetrahedral prism is a square with side a, You can write the formula in a more detailed form:

V = a² h

If we are talking about a cube - a regular prism with equal length, width and height, the volume is calculated as follows:

To understand how to find the lateral surface area of ​​a prism, you need to imagine its sweep.

It can be seen from the drawing that the side surface is made up of 4 equal rectangles. Its area is calculated as the product of the perimeter of the base and the height of the figure:

Sside = Pos h

Since the perimeter of a square is P = 4a, the formula takes the form:

Sside = 4a h

For cube:

Sside = 4a²

To calculate the total surface area of ​​a prism, add 2 base areas to the side area:

Sfull = Sside + 2Sbase

As applied to a quadrangular regular prism, the formula has the form:

Sfull = 4a h + 2a²

For the surface area of ​​a cube:

Sfull = 6a²

Knowing the volume or surface area, you can calculate the individual elements of a geometric body.

Finding prism elements

Often there are problems in which the volume is given or the value of the lateral surface area is known, where it is necessary to determine the length of the side of the base or the height. In such cases, formulas can be derived:

  • base side length: a = Sside / 4h = √(V / h);
  • height or side rib length: h = Sside / 4a = V / a²;
  • base area: Sprim = V / h;
  • side face area: Side gr = Sside / 4.

To determine how much area a diagonal section has, you need to know the length of the diagonal and the height of the figure. For a square d = a√2. Therefore:

Sdiag = ah√2

To calculate the diagonal of the prism, the formula is used:

dprize = √(2a² + h²)

To understand how to apply the above ratios, you can practice and solve a few simple tasks.

Examples of problems with solutions

Here are some of the tasks that appear in the state final exams in mathematics.

Exercise 1.

Sand is poured into a box shaped like a regular quadrangular prism. The height of its level is 10 cm. What will the level of sand be if you move it into a container of the same shape, but with a base length 2 times longer?

It should be argued as follows. The amount of sand in the first and second containers did not change, i.e., its volume in them is the same. You can define the length of the base as a. In this case, for the first box, the volume of the substance will be:

V₁ = ha² = 10a²

For the second box, the length of the base is 2a, but the height of the sand level is unknown:

V₂ = h(2a)² = 4ha²

Because the V₁ = V₂, the expressions can be equated:

10a² = 4ha²

After reducing both sides of the equation by a², we get:

As a result, the new sand level will be h = 10 / 4 = 2.5 cm.

Task 2.

ABCDA₁B₁C₁D₁ is a regular prism. It is known that BD = AB₁ = 6√2. Find the total surface area of ​​the body.

To make it easier to understand which elements are known, you can draw a figure.

Since we are talking about a regular prism, we can conclude that the base is a square with a diagonal of 6√2. The diagonal of the side face has the same value, therefore, side face also has the shape of a square, equal to the base. It turns out that all three dimensions - length, width and height - are equal. We can conclude that ABCDA₁B₁C₁D₁ is a cube.

The length of any edge is determined through the known diagonal:

a = d / √2 = 6√2 / √2 = 6

The total surface area is found by the formula for the cube:

Sfull = 6a² = 6 6² = 216


Task 3.

The room is being renovated. It is known that its floor has the shape of a square with an area of ​​9 m². The height of the room is 2.5 m. What is the lowest cost of wallpapering a room if 1 m² costs 50 rubles?

Since the floor and ceiling are squares, that is, regular quadrangles, and its walls are perpendicular to horizontal surfaces, we can conclude that it is a regular prism. It is necessary to determine the area of ​​its lateral surface.

The length of the room is a = √9 = 3 m.

The square will be covered with wallpaper Sside = 4 3 2.5 = 30 m².

The lowest cost of wallpaper for this room will be 50 30 = 1500 rubles.

Thus, to solve problems for a rectangular prism, it is enough to be able to calculate the area and perimeter of a square and a rectangle, as well as to know the formulas for finding the volume and surface area.

How to find the area of ​​a cube