The speed of the milky way. What is our Milky Way galaxy?



Add your price to the database

A comment

The Milky Way is the galaxy that contains the Earth, the solar system, and all the individual stars visible to the naked eye. Refers to barred spiral galaxies.

The Milky Way, together with the Andromeda Galaxy (M31), the Triangulum Galaxy (M33) and more than 40 dwarf satellite galaxies - its own and Andromeda - form the Local Group of galaxies, which is part of the Local Supercluster (Virgo Supercluster).

Discovery history

Discovery of Galileo

The Milky Way revealed its secret only in 1610. It was then that the first telescope was invented, which was used by Galileo Galilei. The famous scientist saw through the device that the Milky Way is a real cluster of stars, which, when viewed with the naked eye, merged into a continuous faintly twinkling band. Galileo even succeeded in explaining the heterogeneity of the structure of this band. It was caused by the presence in the celestial phenomenon of not only star clusters. There are also dark clouds. The combination of these two elements creates an amazing image of the night phenomenon.

Discovery of William Herschel

The study of the Milky Way continued into the 18th century. During this period, his most active researcher was William Herschel. The famous composer and musician was engaged in the manufacture of telescopes and studied the science of the stars. The most important discovery of Herschel was the Great Plan of the Universe. This scientist observed the planets through a telescope and counted them in different parts of the sky. Studies have led to the conclusion that the Milky Way is a kind of stellar island, in which our Sun is also located. Herschel even drew a schematic plan of his discovery. On the image star system was depicted as a millstone and had an elongated irregular shape. The sun at the same time was inside this ring that surrounded our world. This is how all scientists represented our Galaxy until the beginning of the last century.

It was not until the 1920s that the work of Jacobus Kaptein saw the light of day, in which the Milky Way was described in the most detailed way. At the same time, the author gave a scheme of the star island, which is as similar as possible to the one that is known to us at the present time. Today we know that the Milky Way is a Galaxy, which includes the solar system, the Earth and those individual stars that are visible to humans with the naked eye.

What shape is the Milky Way?

When studying galaxies, Edwin Hubble classified them into different kinds elliptical and spiral. Spiral galaxies are disk-shaped with spiral arms inside. Since the Milky Way is disk-shaped along with spiral galaxies, it is logical to assume that it is probably a spiral galaxy.

In the 1930s, R. J. Trumpler realized that the estimates of the size of the Milky Way galaxy made by Kapetin and others were erroneous, because the measurements were based on observations using radiation waves in the visible region of the spectrum. Trumpler came to the conclusion that a huge amount of dust in the plane of the Milky Way absorbs visible light. Therefore, distant stars and their clusters seem more ghostly than they really are. Because of this, in order to accurately image the stars and star clusters within the Milky Way, astronomers had to find a way to see through the dust.

In the 1950s, the first radio telescopes were invented. Astronomers have discovered that hydrogen atoms emit radiation in radio waves, and that such radio waves can penetrate dust in the Milky Way. Thus, it became possible to see the spiral arms of this galaxy. To do this, we used the marking of stars by analogy with marks when measuring distances. Astronomers realized that O and B stars could serve to achieve this goal.

Such stars have several features:

  • brightness– they are highly visible and often found in small groups or associations;
  • warm– they emit waves of different lengths (visible, infrared, radio waves);
  • short life time They live for about 100 million years. Given the speed at which stars rotate at the center of the galaxy, they do not move far from their birthplace.

Astronomers can use radio telescopes to accurately match the positions of O and B stars and, based on the Doppler shifts in the radio spectrum, determine their speed. After performing such operations on many stars, scientists were able to produce combined radio and optical maps of the Milky Way's spiral arms. Each arm is named after the constellation that exists in it.

Astronomers believe that the movement of matter around the center of the galaxy creates density waves (regions of high and low density), just like you see when you mix cake dough with an electric mixer. These density waves are thought to have caused the spiral character of the galaxy.

Thus, by examining the sky at different wavelengths (radio, infrared, visible, ultraviolet, X-ray) using various ground-based and space telescopes, one can obtain various images of the Milky Way.

Doppler effect. Just as the high pitched sound of a fire truck siren gets lower as the vehicle moves away, the movement of the stars affects the wavelengths of light that reach Earth from them. This phenomenon is called the Doppler effect. We can measure this effect by measuring the lines in the star's spectrum and comparing them to the spectrum of a standard lamp. The degree of Doppler shift indicates how fast the star is moving relative to us. In addition, the direction of the Doppler shift can show us the direction in which the star is moving. If the star's spectrum shifts to the blue end, then the star is moving towards us; if in the red direction, it moves away.

Structure of the Milky Way

If we carefully consider the structure of the Milky Way, we will see the following:

  1. galactic disk. Most of the stars in the Milky Way are concentrated here.

The disk itself is divided into the following parts:

  • The nucleus is the center of the disk;
  • Arcs - areas around the nucleus, including directly the areas above and below the plane of the disk.
  • Spiral arms are areas that protrude outward from the center. Our solar system is located in one of the spiral arms of the Milky Way.
  1. globular clusters. Several hundred of them are scattered above and below the plane of the disk.
  2. Halo. This is a large, dim region that surrounds the entire galaxy. The halo consists of a gas of high temperature and, possibly, dark matter.

The radius of the halo is much larger than the size of the disk and, according to some data, reaches several hundred thousand light-years. The center of symmetry of the Milky Way halo coincides with the center of the galactic disk. The halo consists mainly of very old, dim stars. The age of the spherical component of the Galaxy exceeds 12 billion years. The central, densest part of the halo within a few thousand light-years of the center of the Galaxy is called bulge(translated from English "thickening"). The halo as a whole rotates very slowly.

Compared to halo disk spins much faster. It looks like two plates folded at the edges. The diameter of the disk of the Galaxy is about 30 kpc (100,000 light years). The thickness is about 1000 light years. The rotation speed is not the same at different distances from the center. It rapidly increases from zero in the center to 200-240 km/s at a distance of 2 thousand light years from it. The mass of the disk is 150 billion times the mass of the Sun (1.99*1030 kg). Young stars and star clusters are concentrated in the disk. There are many bright and hot stars among them. The gas in the disk of the Galaxy is unevenly distributed, forming giant clouds. Main chemical element in our galaxy is hydrogen. About 1/4 of it consists of helium.

One of the most interesting regions of the Galaxy is its center, or core located in the direction of the constellation Sagittarius. The visible radiation of the central regions of the Galaxy is completely hidden from us by powerful layers of absorbing matter. Therefore, it began to be studied only after the creation of receivers for infrared and radio radiation, which is absorbed to a lesser extent. The central regions of the Galaxy are characterized by a strong concentration of stars: there are many thousands of them in each cubic parsec. Closer to the center, regions of ionized hydrogen and numerous sources of infrared radiation are noted, indicating star formation taking place there. At the very center of the Galaxy, the existence of a massive compact object is assumed - a black hole with a mass of about a million solar masses.

One of the most notable formations is spiral branches (or sleeves). They gave the name to this type of objects - spiral galaxies. Along the arms, the youngest stars are mainly concentrated, many open star clusters, as well as chains of dense clouds of interstellar gas in which stars continue to form. In contrast to the halo, where any manifestations of stellar activity are extremely rare, a stormy life continues in the branches, associated with the continuous transition of matter from interstellar space to stars and back. The spiral arms of the Milky Way are largely hidden from us by absorbing matter. Their detailed study began after the advent of radio telescopes. They made it possible to study the structure of the Galaxy by observing the radio emission of interstellar hydrogen atoms, which are concentrated along long spirals. By modern ideas, spiral arms are associated with compression waves propagating across the disk of the galaxy. Passing through the compression regions, the matter of the disk becomes denser, and the formation of stars from the gas becomes more intense. The reasons for the appearance of such a peculiar wave structure in the disks of spiral galaxies are not entirely clear. Many astrophysicists are working on this problem.

The place of the sun in the galaxy

In the vicinity of the Sun, it is possible to trace sections of two spiral branches that are about 3 thousand light years away from us. According to the constellations where these areas are found, they are called the Sagittarius arm and the Perseus arm. The sun is almost in the middle between these spiral arms. True, relatively close (by galactic standards) from us, in the constellation of Orion, there is another, not so pronounced branch, which is considered an offshoot of one of the main spiral arms of the Galaxy.

The distance from the Sun to the center of the Galaxy is 23-28 thousand light years, or 7-9 thousand parsecs. This suggests that the Sun is located closer to the edge of the disk than to its center.

Together with all nearby stars, the Sun revolves around the center of the Galaxy at a speed of 220–240 km/s, making one revolution in about 200 million years. This means that for the entire time of its existence, the Earth flew around the center of the Galaxy no more than 30 times.

The speed of rotation of the Sun around the center of the Galaxy practically coincides with the speed with which the compression wave, which forms the spiral arm, moves in the given region. Such a situation is generally unusual for the Galaxy: the spiral arms rotate at a constant angular velocity, like the spokes of a wheel, while the movement of stars, as we have seen, obeys a completely different pattern. Therefore, almost the entire stellar population of the disk either gets inside the spiral branch or leaves it. The only place where the speeds of stars and spiral arms coincide is the so-called corotation circle, and it is on it that the Sun is located!

For the Earth, this circumstance is extremely favorable. After all, violent processes occur in the spiral branches, generating powerful radiation, destructive for all living things. And no atmosphere could protect him from it. But our planet exists in a relatively quiet place in the Galaxy and has not experienced the influence of these cosmic cataclysms for hundreds of millions and billions of years. Perhaps that is why life could originate and survive on Earth.

For a long time, the position of the Sun among the stars was considered the most ordinary. Today we know that this is not so: in a certain sense it is privileged. And this must be taken into account when discussing the possibility of the existence of life in other parts of our Galaxy.

The location of the stars

On a cloudless night sky, the Milky Way is visible from anywhere on our planet. However, only a part of the Galaxy, which is a system of stars located inside the Orion arm, is accessible to the human eye. What is the Milky Way? The definition in space of all its parts becomes most understandable if we consider the star map. In this case, it becomes clear that the Sun, illuminating the Earth, is located almost on the disk. This is almost the edge of the Galaxy, where the distance from the nucleus is 26-28 thousand light years. Moving at a speed of 240 kilometers per hour, the Luminary spends 200 million years on one revolution around the core, so that for the entire time of its existence it traveled across the disk, rounding the core, only thirty times. Our planet is in the so-called corotation circle. This is a place in which the speed of rotation of the arms and stars are identical. This circle is characterized elevated level radiation. That is why life, as scientists believe, could only arise on that planet, near which there is a small number of stars. Our Earth is such a planet. It is located on the periphery of the Galaxy, in its most peaceful place. That is why on our planet for several billion years there were no global cataclysms that often occur in the Universe.

What will the death of the Milky Way look like?

The cosmic story of the death of our galaxy begins here and now. We can blindly look around, thinking that the Milky Way, Andromeda (our older sister) and a bunch of unknowns - our cosmic neighbors - this is our home, but in reality there is much more. It's time to explore what else is around us. Go.

  • Triangulum Galaxy. With a mass of about 5% of that of the Milky Way, it is the third largest galaxy in the Local Group. It has a spiral structure, its own satellites and may be a satellite of the Andromeda galaxy.
  • Large Magellanic Cloud. This galaxy is only 1% of the mass of the Milky Way, but is the fourth largest in our local group. It is very close to our Milky Way—less than 200,000 light-years away—and is undergoing active star formation as tidal interactions with our galaxy cause gas to collapse and create new, hot, and large stars in the universe.
  • Small Magellanic Cloud, NGC 3190 and NGC 6822. All of them have masses from 0.1% to 0.6% of the Milky Way (and it is not clear which one is larger) and all three are independent galaxies. Each contains over a billion solar masses of material.
  • Elliptical galaxies M32 and M110. They may be "only" satellites of Andromeda, but each of them has more than a billion stars, and they can even exceed the masses of numbers 5, 6 and 7.

In addition, there are at least 45 other known galaxies - smaller ones - that make up our local group. Each of them has a halo of dark matter surrounding it; each of them is gravitationally attached to the other, located at a distance of 3 million light years. Despite their size, mass and size, none of them will remain in a few billion years.

So the main thing

As time passes, galaxies interact gravitationally. They not only pull together due to gravitational attraction, but also interact tidally. We usually talk about tides in the context of the Moon pulling on Earth's oceans and creating tides, and this is partly true. But from the point of view of the galaxy, the tides are a less noticeable process. The part of the small galaxy that is close to the big one will be attracted with more gravitational force, and the part that is further away will experience less attraction. As a result, the small galaxy will stretch out and eventually break apart under the influence of gravity.

Small galaxies that are part of our local group, including both Magellanic Clouds and dwarf elliptical galaxies, will be torn apart in this way, and their material will be incorporated into the large galaxies with which they merge. “So what,” you say. After all, this is not quite death, because large galaxies will remain alive. But even they will not exist forever in this state. In 4 billion years, the mutual gravitational pull of the Milky Way and Andromeda will drag the galaxies into a gravitational dance that will lead to a big merger. Although this process will take billions of years, the spiral structure of both galaxies will be destroyed, resulting in the creation of a single, giant elliptical galaxy at the core of our local group: the Milkweeds.

A small percentage of the stars will be ejected during such a merger, but the majority will remain unharmed, and there will be a large burst of star formation. Eventually, the rest of the galaxies in our local group will also be sucked in, leaving one big giant galaxy to gobble up the rest. This process will take place in all connected groups and clusters of galaxies throughout the Universe, while dark energy will push individual groups and clusters apart from each other. But even this cannot be called death, because the galaxy will remain. And for a while it will be. But the galaxy is made up of stars, dust and gas, and everything will eventually come to an end.

Across the Universe, galactic mergers will take place over tens of billions of years. During the same time, dark energy will pull them all over the Universe to a state of complete solitude and inaccessibility. And although the last galaxies beyond our local group will not disappear until hundreds of billions of years have passed, the stars will live in them. The longest-lived stars in existence today will continue to burn their fuel for tens of trillions of years, and new stars will emerge from the gas, dust, and stellar corpses that populate each galaxy—albeit with fewer and fewer.

When the last stars burn out, only their corpses will remain - white dwarfs and neutron stars. They will shine for hundreds of trillions or even quadrillions of years before they go out. When that inevitability happens, we're left with brown dwarfs (failed stars) that accidentally fuse, re-ignite nuclear fusion, and create starlight for tens of trillions of years.

When the last star goes out tens of quadrillion years in the future, there will still be some mass left in the galaxy. So this can not be called "true death."

All masses gravitationally interact with each other, and gravitational objects of different masses exhibit strange properties when interacting:

  • Repeated "approaches" and close passes cause exchanges of speed and momentum between them.
  • Objects with low mass are ejected from the galaxy, and objects with higher mass sink into the center, losing speed.
  • Over a sufficiently long period of time, most of the mass will be ejected, and only a small part of the remaining mass will be firmly attached.

At the very center of these galactic remnants, there will be a supermassive black hole, in every galaxy, and the rest of the galactic objects will orbit around an enlarged version of our own. solar system. Of course, this structure will be the last, and since the black hole will be as large as possible, it will eat everything it can reach. At the center of Mlecomeda there will be an object hundreds of millions of times more massive than our Sun.

But will it end too?

Thanks to the phenomenon of Hawking radiation, even these objects will one day decay. It will take about 10 80 to 10 100 years, depending on how massive our supermassive black hole becomes as it grows, but the end is coming. After that, the remains, rotating around the galactic center, will untie and leave only a halo of dark matter, which can also randomly dissociate, depending on the properties of this very matter. Without any matter, there will be nothing that we once called the local group, the Milky Way and other dear names.

Mythology

Armenian, Arabic, Wallachian, Jewish, Persian, Turkish, Kyrgyz

According to one of the Armenian myths about the Milky Way, the god Vahagn, the ancestor of the Armenians, stole straw from the ancestor of the Assyrians, Barsham, in a harsh winter and disappeared into the sky. When he walked with his prey across the sky, he dropped straws on his way; from them a light trail was formed in the sky (in Armenian “Straw thief’s road”). The myth about scattered straw is also spoken of by Arabic, Jewish, Persian, Turkish and Kyrgyz names (Kirg. samanchynyn jolu- the path of the strawman) of this phenomenon. The inhabitants of Wallachia believed that Venus stole this straw from St. Peter.

Buryat

According to Buryat mythology, good forces create the world, modify the universe. Thus, the Milky Way arose from the milk that Manzan Gurme drew from her breast and splashed out after Abai Geser, who had deceived her. According to another version, the Milky Way is a "seam of the sky" sewn up after the stars fell out of it; on it, like on a bridge, tengri walk.

Hungarian

According to Hungarian legend, Attila will descend the Milky Way if the Székelys are in danger; the stars represent sparks from the hooves. Milky Way. accordingly, it is called the "road of warriors."

ancient greek

Etymology of the word Galaxias (Γαλαξίας) and its association with milk (γάλα) reveal two similar ancient Greek myths. One of the legends tells about the mother's milk spilled across the sky of the goddess Hera, who was breastfeeding Hercules. When Hera learned that the baby she was breastfeeding was not her own child, but the illegitimate son of Zeus and an earthly woman, she pushed him away, and the spilled milk became the Milky Way. Another legend says that the spilled milk is the milk of Rhea, the wife of Kronos, and Zeus himself was the baby. Kronos devoured his children, as it was predicted to him that he would be overthrown by his own son. Rhea has a plan to save her sixth child, the newborn Zeus. She wrapped a stone in baby clothes and slipped it to Kronos. Kronos asked her to feed her son one more time before he swallowed him. The milk spilled from Rhea's chest on a bare rock was subsequently called the Milky Way.

Indian

The ancient Indians considered the Milky Way to be the milk of an evening red cow passing through the sky. In the Rig Veda, the Milky Way is called Aryaman's Throne Road. The Bhagavata Purana contains a version according to which the Milky Way is the belly of a celestial dolphin.

Inca

The main objects of observation in Inca astronomy (which was reflected in their mythology) in the sky were the dark sections of the Milky Way - a kind of "constellation" in the terminology of Andean cultures: Lama, Lama Cub, Shepherd, Condor, Partridge, Toad, Snake, Fox; as well as the stars: the Southern Cross, the Pleiades, Lyra and many others.

Ketskaya

In the Ket myths, similarly to the Selkup ones, the Milky Way is described as the road of one of the three mythological characters: the Son of Heaven (Esya), who went to hunt on the western side of the sky and froze there, the hero Albe, who pursued the evil goddess, or the first shaman Dokh, who climbed this road to the sun.

Chinese, Vietnamese, Korean, Japanese

In the mythologies of the Sinosphere, the Milky Way is called and compared with a river (in Vietnamese, Chinese, Korean and Japanese, the name “silver river” is retained. The Chinese also sometimes called the Milky Way “Yellow Road”, according to the color of straw.

Indigenous peoples of North America

The Hidatsa and the Eskimos call the Milky Way "Ash". Their myths speak of a girl who scattered ashes across the sky so that people could find their way home at night. The Cheyenne believed that the Milky Way was dirt and silt raised by the belly of a turtle floating in the sky. Eskimos from the Bering Strait - that these are the traces of the Creator Raven walking across the sky. The Cherokee believed that the Milky Way was formed when one hunter stole another's wife out of jealousy, and her dog began to eat unattended cornmeal and scattered it across the sky (the same myth is found among the Khoisan population of the Kalahari). Another myth of the same people says that the Milky Way is the trail of a dog dragging something across the sky. The Ctunah called the Milky Way "the dog's tail", the Blackfoot called it the "wolf road". Wyandot myth says that the Milky Way is a place where the souls of dead people and dogs come together and dance.

Maori

In Maori mythology, the Milky Way is considered to be the Tama-rereti boat. The nose of the boat is the constellation Orion and Scorpio, the anchor is the Southern Cross, Alpha Centauri and Hadar are the rope. According to legend, one day Tama-rereti was sailing in his canoe and saw that it was already late, and he was far from home. There were no stars in the sky, and, fearing that Tanif might attack, Tama-rereti began to throw sparkling pebbles into the sky. The heavenly deity Ranginui liked what he was doing, and he placed the Tama-rereti boat in the sky, and turned the pebbles into stars.

Finnish, Lithuanian, Estonian, Erzya, Kazakh

The Finnish name is Fin. Linnunrata- means "The Way of the Birds"; the Lithuanian name has a similar etymology. Estonian myth also connects the Milky ("bird's") Way with bird flight.

The Erzya name is "Kargon Ki" ("Crane Road").

The Kazakh name is “Kus Zholy” (“Way of the Birds”).

Interesting facts about the Milky Way galaxy

  • The Milky Way began forming as a cluster of dense regions after big bang. The first stars to appear were in globular clusters that continue to exist. These are the oldest stars in the galaxy;
  • The galaxy has increased its parameters by absorbing and merging with others. Now she is picking stars from the Sagittarius Dwarf Galaxy and the Magellanic Clouds;
  • The Milky Way moves in space with an acceleration of 550 km / s with respect to the background radiation;
  • Lurking at the galactic center is the supermassive black hole Sagittarius A*. By mass, it is 4.3 million times greater than the solar one;
  • Gas, dust and stars revolve around the center at a speed of 220 km/s. This is a stable indicator, implying the presence of a shell of dark matter;
  • In 5 billion years, a collision with the Andromeda galaxy is expected.

You are sitting, standing or lying down reading this article, and you do not feel that the Earth is rotating around its axis at a breakneck speed - about 1,700 km / h at the equator. However, the rotation speed doesn't seem all that fast when converted to km/s. It turns out 0.5 km / s - a barely noticeable flash on the radar, in comparison with other speeds around us.

Just like other planets in the solar system, the Earth revolves around the Sun. And in order to stay in its orbit, it moves at a speed of 30 km / s. Venus and Mercury, which are closer to the Sun, move faster, Mars, whose orbit passes the orbit of the Earth, moves much more slowly.

But even the Sun does not stand in one place. Our Milky Way galaxy is huge, massive and also mobile! All stars, planets, gas clouds, dust particles, black holes, dark matter - all this moves relative to a common center of mass.

According to scientists, the Sun is located at a distance of 25,000 light years from the center of our galaxy and moves in an elliptical orbit, making a complete revolution every 220-250 million years. It turns out that the speed of the Sun is about 200-220 km / s, which is hundreds of times higher than the speed of the Earth around its axis and tens of times higher than the speed of its movement around the Sun. This is what the movement of our solar system looks like.

Is the galaxy stationary? Again no. Giant space objects have a large mass, and therefore, create strong gravitational fields. Give the Universe a little time (and we had it - about 13.8 billion years), and everything will start moving in the direction of the greatest attraction. That is why the Universe is not homogeneous, but consists of galaxies and groups of galaxies.

What does this mean for us?

This means that the Milky Way is pulled towards itself by other galaxies and groups of galaxies located nearby. This means that massive objects dominate this process. And this means that not only our galaxy, but also all those around us are influenced by these "tractors". We are getting closer to understanding what happens to us in outer space, but we still lack facts, for example:

  • what were the initial conditions under which the universe was born;
  • how the various masses in the galaxy move and change over time;
  • how the Milky Way and surrounding galaxies and clusters formed;
  • and how it is happening now.

However, there is a trick that will help us figure it out.

The universe is filled with cosmic microwave background radiation with a temperature of 2.725 K, which has been preserved since the time of the Big Bang. In some places there are tiny deviations - about 100 μK, but the general temperature background is constant.

This is because the universe was formed in the Big Bang 13.8 billion years ago and is still expanding and cooling.

380,000 years after the Big Bang, the universe cooled to such a temperature that it became possible to form hydrogen atoms. Prior to this, photons constantly interacted with the rest of the plasma particles: they collided with them and exchanged energy. As the universe cools, there are fewer charged particles, and more space between them. Photons were able to move freely in space. Relic radiation is photons that were emitted by the plasma towards the future location of the Earth, but avoided scattering, since recombination has already begun. They reach the Earth through the space of the Universe, which continues to expand.

You can "see" this radiation yourself. The interference that occurs on an empty TV channel if you use a simple bunny-ear antenna is 1% due to CMB.

And yet the temperature of the background background is not the same in all directions. According to the results of the Planck mission research, the temperature differs somewhat in the opposite hemispheres of the celestial sphere: it is slightly higher in the areas of the sky south of the ecliptic - about 2.728 K, and lower in the other half - about 2.722 K.

Microwave background map made with the Planck telescope.

This difference is almost 100 times greater than the rest of the observed CMB temperature fluctuations, and this is misleading. Why is this happening? The answer is obvious - this difference is not due to fluctuations in the background radiation, it appears because there is movement!

When you approach a light source or it approaches you, the spectral lines in the spectrum of the source shift towards short waves (violet shift), when you move away from it or it moves away from you, the spectral lines shift towards long waves (red shift).

The relic radiation cannot be more or less energetic, which means we are moving through space. The Doppler effect helps to determine that our solar system is moving relative to the CMB at a speed of 368 ± 2 km/s, and the local group of galaxies, including the Milky Way, the Andromeda Galaxy and the Triangulum Galaxy, is moving at a speed of 627 ± 22 km/s relative to the CMB. These are the so-called peculiar velocities of galaxies, which are several hundred km/s. In addition to them, there are also cosmological velocities due to the expansion of the Universe and calculated according to the Hubble law.

Thanks to the residual radiation from the Big Bang, we can observe that everything in the universe is constantly moving and changing. And our galaxy is only a part of this process.

The solar system is immersed in a huge star system - the Galaxy, numbering hundreds of billions of stars of the most different luminosity and color (Stars in the section: "The Life of Stars"). The properties of different types of stars in the Galaxy are well known to astronomers. Our neighbors are not just typical stars and other celestial objects, but rather representatives of the most numerous "tribes" of the Galaxy. At present, all or almost all stars have been studied in the vicinity of the Sun, with the exception of very dwarf ones, which emit very little light. Most of them are very faint red dwarfs - their masses are 3-10 times less than that of the Sun. Stars similar to the Sun are very rare, only 6% of them. Many of our neighbors (72%) are grouped into multiple systems, where the components are connected to each other by gravitational forces. Which of the hundreds of nearby stars can claim the title of the nearest neighbor of the Sun? Now it is considered a component of the well-known triple system Alpha Centauri - the faint red dwarf Proxima. The distance to the proxima is 1.31 pc, the light from it takes 4.2 years to reach us. The statistics of the circumsolar population gives an idea of ​​the evolution of the galactic disk and the galaxy as a whole. For example, the luminosity distribution of solar-type stars shows that the age of the disk is 10-13 billion years.

In the 17th century, after the invention of the telescope, scientists first realized how large the number of stars in outer space is. In 1755, the German philosopher and naturalist Immanuel Kant suggested that the stars form groups in space, just as the planets make up the solar system. These groups he called "star islands". According to Kant, one of these innumerable islands is the Milky Way - a grandiose cluster of stars visible in the sky as a bright foggy band. In ancient Greek, the word "galactikos" means "milky", which is why the Milky Way and similar star systems are called galaxies.

Dimensions and structure of our Galaxy

Based on the results of his calculations, Herschel attempted to determine the dimensions and forms a kind of thick disk: in the plane of the Milky Way, it extends to a distance of no more than 850 units, and in the perpendicular direction - 200 units, if we take the distance to Sirius as a unit. According to the modern scale of distances, this corresponds to 7300X1700 light years. This estimate generally correctly reflects the structure of the Milky Way, although it is highly inaccurate. The fact is that in addition to stars, the disk of the Galaxy also includes numerous gas and dust clouds, which weaken the light of distant stars. The first explorers of the Galaxy did not know about this absorbing substance and believed that they could see all its stars.

The true dimensions of the Galaxy were established only in the 20th century. It turned out that it is a much flatter formation than previously thought. The diameter of the galactic disk exceeds 100 thousand light years, and the thickness is about 1000 light years. Due to the fact that the Solar System is located practically in the plane of the Galaxy, filled with absorbing matter, many details of the structure of the Milky Way are hidden from the gaze of an earthly observer. However, they can be studied on the example of other galaxies similar to Shashi. So, in the 40s. XX century, observing the galaxy M 31, better known as the Andromeda Nebula, the German astronomer Walter Baade noticed that the flat lenticular disk of this huge galaxy is immersed in a more rarefied spherical star cloud - a halo. Since the nebula is very similar to our Galaxy, he suggested that the Milky Way also has a similar structure. The stars of the galactic disk have been called population type I, while the stars in the halo have been called population type II.

As modern studies show, the two types of stellar population differ not only in their spatial position, but also in the nature of their movement, as well as in their chemical composition. These features are associated primarily with the different origin of the disk and the spherical component.

Structure of the Galaxy: Halo

The boundaries of our Galaxy are determined by the size of the halo. The radius of the halo is much larger than the size of the disk and, according to some data, reaches several hundred thousand light-years. The center of symmetry of the Milky Way halo coincides with the center of the galactic disk. The halo consists mainly of very old, dim, low-mass stars. They occur both singly and in the form of globular clusters, which can include more than a million stars. The age of the population of the spherical component of the Galaxy exceeds 12 billion years. It is usually taken as the age of the Galaxy itself. A characteristic feature of halo stars is their extremely small proportion of heavy chemical elements. The stars that form globular clusters contain hundreds of times less metals than the Sun.

The stars of the spherical component are concentrated towards the center of the Galaxy. The central, densest part of the halo within a few thousand light-years from the center of the Galaxy is called the "bulge" ("thickening"). Stars and stellar halo clusters move around the center of the Galaxy in very elongated orbits. Due to the fact that the rotation of individual stars occurs almost randomly, the halo as a whole rotates very slowly.

Structure of the Galaxy: Disk

Compared to the halo, the disk rotates noticeably faster. The speed of its rotation is not the same at different distances from the center. It rapidly increases from zero in the center to 200-240 km/s at a distance of 2 thousand light years from it, then decreases somewhat, increases again to approximately the same value, and then remains almost constant. The study of the features of disk rotation made it possible to estimate its mass. It turned out that it is 150 billion times more than the mass of the Sun. The disk population is very different from the halo population. Near the plane of the disk, young stars and star clusters are concentrated, the age of which does not exceed several billion years. They form the so-called flat component. There are a lot of bright and hot stars among them.

The gas in the disk of the Galaxy is also concentrated mainly near its plane. It is located unevenly, forming numerous gas clouds - giant superclouds of inhomogeneous structure, several thousand light-years long, to small clouds no larger than a parsec in size. Hydrogen is the main chemical element in our galaxy. Approximately 1/4 of it consists of helium. Compared to these two elements, the rest are present in very small amounts. On average, the chemical composition of stars and gas in the disk is almost the same as that of the Sun.

Structure of the Galaxy: Core

One of the most interesting regions of the Galaxy is considered to be its center, or core, located in the direction of the constellation Sagittarius. The visible radiation of the central regions of the Galaxy is completely hidden from us by powerful layers of absorbing matter. Therefore, they began to study it only after the creation of receivers for infrared and radio radiation, which is absorbed to a lesser extent. The central regions of the Galaxy are characterized by a strong concentration of stars: each cubic parsec near the center contains many thousands of them. Distances between stars are tens and hundreds of times less than in the vicinity of the Sun. If we lived on a planet near a star located near the core of the Galaxy, then dozens of stars would be visible in the sky, comparable in brightness to the Moon, and many thousands brighter than the most bright stars our sky.

In addition to a large number of stars in the central region of the Galaxy, there is a circumnuclear gaseous disk, consisting mainly of molecular hydrogen. Its radius exceeds 1000 light years. Closer to the center, there are regions of ionized hydrogen and numerous sources of infrared radiation, indicating that star formation is taking place there. In the very center of the Galaxy, the existence of a massive compact object is assumed - a black hole with a mass of about a million solar masses. In the center there is also a bright radio source Sagittarius A, the origin of which is associated with the activity of the nucleus.

The Milky Way Galaxy is very majestic, beautiful. This huge world is our homeland, our solar system. All the stars and other objects that are visible to the naked eye in the night sky are our galaxy. Although there are some objects that are located in the Andromeda Nebula - a neighbor of our Milky Way.

Description of the Milky Way

The Milky Way galaxy is huge, 100 thousand light years in size, and, as you know, one light year is equal to 9460730472580 km. Our solar system is located at a distance of 27,000 light years from the center of the galaxy, in one of the arms, which is called the Orion arm.

Our solar system revolves around the center of the Milky Way galaxy. This happens in the same way that the Earth revolves around the Sun. The solar system makes a complete revolution in 200 million years.

Deformation

The Milky Way galaxy looks like a disk with a bulge in the center. It's not in perfect shape. On one side there is a bend to the north of the center of the galaxy, and on the other it goes down, then turns to the right. Outwardly, such a deformation is somewhat reminiscent of a wave. The disk itself is warped. This is due to the presence of the Small and Large Magellanic Clouds nearby. They orbit the Milky Way very quickly - this was confirmed by the Hubble telescope. These two dwarf galaxies are often referred to as satellites of the Milky Way. Clouds create a gravitationally bound system that is very heavy and quite massive due to heavy elements in bulk. It is assumed that they are like a tug of war between galaxies, creating vibrations. The result is a deformation of the Milky Way galaxy. The structure of our galaxy is special, it has a halo.

Scientists believe that in billions of years the Milky Way will be swallowed up by the Magellanic Clouds, and after some more time it will be swallowed up by Andromeda.

Halo

Wondering what kind of galaxy the Milky Way is, scientists began to study it. They managed to find out that for 90% of its mass it consists of dark matter, which causes a mysterious halo. Everything that is visible to the naked eye from the Earth, namely that luminous matter, is about 10% of the galaxy.

Numerous studies have confirmed that the Milky Way has a halo. Scientists have compiled various models that take into account the invisible part and without it. After the experiments, the opinion was put forward that if there were no halo, then the speed of the planets and other elements of the Milky Way would be less than now. Because of this feature, it was suggested that most of the components consist of an invisible mass or dark matter.

Number of stars

One of the most unique is the Milky Way galaxy. The structure of our galaxy is unusual, it has more than 400 billion stars. Approximately one fourth of them big stars. Note: other galaxies have fewer stars. There are about ten billion stars in the Cloud, some others consist of a billion, and in the Milky Way there are more than 400 billion very different stars, and only a small part, about 3000, is visible from Earth. It is impossible to say exactly how many stars are in the Milky Way, because how the galaxy is constantly losing objects due to their transformation into supernovae.

Gases and dust

Approximately 15% of the galaxy is dust and gases. Maybe because of them our galaxy is called the Milky Way? Despite its huge size, we can see about 6,000 light-years ahead, but the size of the galaxy is 120,000 light-years. Maybe it is more, but even the most powerful telescopes cannot see beyond this. This is due to the accumulation of gas and dust.

The thickness of the dust does not allow visible light to pass through, but infrared light passes through it, and scientists can create maps of the starry sky.

What was before

According to scientists, our galaxy has not always been like this. The Milky Way was created from the merger of several other galaxies. This giant captured other planets, areas, which had a strong influence on the size and shape. Even now, planets are being captured by the Milky Way galaxy. An example of this is the objects Big Dog- a dwarf galaxy located near our Milky Way. Canis stars are periodically added to our universe, and from ours they pass to other galaxies, for example, there is an exchange of objects with the Sagittarius galaxy.

view of the milky way

No scientist, astronomer can say for sure what our Milky Way looks like from above. This is due to the fact that the Earth is located in the Milky Way galaxy, 26,000 light-years from the center. Due to this location, it is not possible to take pictures of the entire Milky Way. Therefore, any image of a galaxy is either a snapshot of other visible galaxies, or someone else's fantasy. And we can only guess what it actually looks like. There is even a possibility that we now know as much about it as the ancient people who considered the Earth to be flat.

Center

The center of the Milky Way galaxy is called Sagittarius A * - a great source of radio waves, suggesting that there is a huge black hole at the very heart. According to assumptions, its dimensions are a little more than 22 million kilometers, and this is the hole itself.

All the matter that tries to get into the hole forms a huge disk, almost 5 million times the size of our Sun. But even such a pulling force does not prevent new stars from forming at the edge of a black hole.

Age

According to estimates of the composition of the Milky Way galaxy, it was possible to establish an estimated age of about 14 billion years. The oldest star is just over 13 billion years old. The age of a galaxy is calculated by determining the age of the oldest star and the phases preceding its formation. Based on the available data, scientists have suggested that our universe is about 13.6-13.8 billion years old.

First, the bulge of the Milky Way was formed, then its middle part, in the place of which a black hole subsequently formed. Three billion years later, a disk with sleeves appeared. Gradually, it changed, and only about ten billion years ago did it begin to look like it does now.

We are part of something bigger

All the stars in the Milky Way galaxy are part of a larger galactic structure. We are part of the Virgo Supercluster. The nearest galaxies to the Milky Way, such as the Magellanic Cloud, Andromeda and other fifty galaxies, are one cluster, the Virgo Supercluster. A supercluster is a group of galaxies that covers a huge area. And this is only a small part of the stellar neighborhood.

The Virgo Supercluster contains more than a hundred groups of clusters over 110 million light-years across. The Virgo cluster itself is a small part of the Laniakea supercluster, and it, in turn, is part of the Pisces-Cetus complex.

Rotation

Our Earth moves around the Sun, making a complete revolution in 1 year. Our Sun revolves in the Milky Way around the center of the galaxy. Our galaxy is moving in relation to a special radiation. CMB radiation is a convenient reference point that allows you to determine the speed of various matters in the Universe. Studies have shown that our galaxy rotates at a speed of 600 kilometers per second.

Name appearance

The galaxy got its name because of its special appearance, reminiscent of spilled milk in the night sky. The name was given to her in Ancient Rome. Then it was called "the road of milk." Until now, it is called that - the Milky Way, associating the name with appearance white streak in the night sky, with spilled milk.

Mentions have been found about the galaxy since the era of Aristotle, who said that the Milky Way is a place where the celestial spheres are in contact with the earthly ones. Until the moment when the telescope was created, no one added anything to this opinion. And only since the seventeenth century people began to look at the world differently.

Our neighbours

For some reason, many people think that the closest galaxy to the Milky Way is Andromeda. But this opinion is not entirely correct. The closest "neighbor" to us is the Canis Major galaxy, located inside the Milky Way. It is located at a distance of 25,000 light years from us, and 42,000 light years from the center. In fact, we are closer to Canis Major than to the black hole at the center of the galaxy.

Before the discovery of Canis Major at a distance of 70 thousand light years, Sagittarius was considered the closest neighbor, and after that - the Large Magellanic Cloud. Unusual stars with a huge density of class M were discovered in Pse.

According to the theory, the Milky Way swallowed Canis Major along with all of its stars, planets and other objects.

Collision of galaxies

Recently, there is more and more information that the nearest galaxy to the Milky Way, the Andromeda Nebula, will swallow our universe. These two giants formed at about the same time - about 13.6 billion years ago. It is believed that these giants are able to unite galaxies, and due to the expansion of the Universe, they must move away from each other. But, contrary to all the rules, these objects move towards each other. The speed of movement is 200 kilometers per second. It is estimated that in 2-3 billion years Andromeda will collide with the Milky Way.

Astronomer J. Dubinsky created the collision model shown in this video:

The collision will not lead to a global catastrophe. And after a few billion years, it will form new system, with familiar galactic shapes.

Dead galaxies

Scientists conducted a large-scale study of the starry sky, covering about an eighth of it. As a result of the analysis of the star systems of the Milky Way galaxy, it was possible to find out that there are previously unknown streams of stars on the outskirts of our universe. This is all that remains of small galaxies that were once destroyed by gravity.

A telescope installed in Chile took a huge number of images that allowed scientists to assess the sky. Surrounding our galaxy, according to the images, are halos of dark matter, rarefied gas and few stars, remnants of dwarf galaxies that were once swallowed up by the Milky Way. With enough data, scientists managed to collect the "skeleton" of the dead galaxies. It's like in paleontology - it's hard to tell from a few bones what the creature looked like, but with enough data, you can assemble the skeleton and guess what the lizard was. So it is here: the information content of the images made it possible to recreate eleven galaxies that were swallowed up by the Milky Way.

Scientists are confident that as they observe and evaluate the information they receive, they will be able to find several more new decayed galaxies that were “eaten” by the Milky Way.

We're under fire

According to scientists, the hypervelocity stars in our galaxy did not originate in it, but in the Large Magellanic Cloud. Theorists cannot explain many points regarding the existence of such stars. For example, it is impossible to say exactly why a large number of hypervelocity stars are concentrated in Sextant and Leo. Revising the theory, scientists came to the conclusion that such a speed can only develop due to the impact on them of a black hole located in the center of the Milky Way.

Recently, more and more stars are being discovered that do not move from the center of our galaxy. After analyzing the trajectory of ultrafast stars, scientists managed to find out that we are under attack from the Large Magellanic Cloud.

The death of the planet

By observing the planets in our galaxy, scientists were able to see how the planet died. She was consumed by an aging star. During the expansion and transformation into a red giant, the star swallowed up its planet. And another planet in the same system changed its orbit. Seeing this and assessing the state of our Sun, scientists came to the conclusion that the same thing will happen to our luminary. In about five million years, it will turn into a red giant.

How the galaxy works

Our Milky Way has several arms that rotate in a spiral. The center of the entire disk is a gigantic black hole.

We can see galactic arms in the night sky. They look like white stripes, reminiscent of a milky road that is strewn with stars. These are the branches of the Milky Way. They are best seen in clear weather during the warm season, when space dust and most gases.

Our galaxy has the following arms:

  1. Angle branch.
  2. Orion. Our solar system is located in this arm. This sleeve is our "room" in the "house".
  3. Sleeve Keel-Sagittarius.
  4. Branch of Perseus.
  5. Branch of the Shield of the Southern Cross.

Also in the composition there is a core, a gas ring, dark matter. It supplies about 90% of the entire galaxy, and the remaining ten are visible objects.

Our solar system, the Earth and other planets are a single whole of a huge gravitational system that can be seen every night in a clear sky. A variety of processes are constantly taking place in our “house”: stars are born, decay, other galaxies are shelling us, dust and gases appear, stars change and go out, others flare up, they dance around ... And all this happens somewhere far away in a universe about which we know so little. Who knows, maybe the time will come when people will be able to reach other arms and planets of our galaxy in a matter of minutes, travel to other universes.



Add your price to the database

A comment

The Milky Way is the galaxy that contains the Earth, the solar system, and all the individual stars visible to the naked eye. Refers to barred spiral galaxies.

The Milky Way, together with the Andromeda Galaxy (M31), the Triangulum Galaxy (M33) and more than 40 dwarf satellite galaxies - its own and Andromeda - form the Local Group of galaxies, which is part of the Local Supercluster (Virgo Supercluster).

Discovery history

Discovery of Galileo

The Milky Way revealed its secret only in 1610. It was then that the first telescope was invented, which was used by Galileo Galilei. The famous scientist saw through the device that the Milky Way is a real cluster of stars, which, when viewed with the naked eye, merged into a continuous faintly twinkling band. Galileo even succeeded in explaining the heterogeneity of the structure of this band. It was caused by the presence in the celestial phenomenon of not only star clusters. There are also dark clouds. The combination of these two elements creates an amazing image of the night phenomenon.

Discovery of William Herschel

The study of the Milky Way continued into the 18th century. During this period, his most active researcher was William Herschel. The famous composer and musician was engaged in the manufacture of telescopes and studied the science of the stars. The most important discovery of Herschel was the Great Plan of the Universe. This scientist observed the planets through a telescope and counted them in different parts of the sky. Studies have led to the conclusion that the Milky Way is a kind of stellar island, in which our Sun is also located. Herschel even drew a schematic plan of his discovery. In the figure, the star system was depicted as a millstone and had an elongated irregular shape. The sun at the same time was inside this ring that surrounded our world. This is how all scientists represented our Galaxy until the beginning of the last century.

It was not until the 1920s that the work of Jacobus Kaptein saw the light of day, in which the Milky Way was described in the most detailed way. At the same time, the author gave a scheme of the star island, which is as similar as possible to the one that is known to us at the present time. Today we know that the Milky Way is a Galaxy, which includes the solar system, the Earth and those individual stars that are visible to humans with the naked eye.

What shape is the Milky Way?

When studying galaxies, Edwin Hubble classified them into various types of elliptical and spiral. Spiral galaxies are disk-shaped with spiral arms inside. Since the Milky Way is disk-shaped along with spiral galaxies, it is logical to assume that it is probably a spiral galaxy.

In the 1930s, R. J. Trumpler realized that the estimates of the size of the Milky Way galaxy made by Kapetin and others were erroneous, because the measurements were based on observations using radiation waves in the visible region of the spectrum. Trumpler came to the conclusion that a huge amount of dust in the plane of the Milky Way absorbs visible light. Therefore, distant stars and their clusters seem more ghostly than they really are. Because of this, in order to accurately image the stars and star clusters within the Milky Way, astronomers had to find a way to see through the dust.

In the 1950s, the first radio telescopes were invented. Astronomers have discovered that hydrogen atoms emit radiation in radio waves, and that such radio waves can penetrate dust in the Milky Way. Thus, it became possible to see the spiral arms of this galaxy. To do this, we used the marking of stars by analogy with marks when measuring distances. Astronomers realized that O and B stars could serve to achieve this goal.

Such stars have several features:

  • brightness– they are highly visible and often found in small groups or associations;
  • warm– they emit waves of different lengths (visible, infrared, radio waves);
  • short life time They live for about 100 million years. Given the speed at which stars rotate at the center of the galaxy, they do not move far from their birthplace.

Astronomers can use radio telescopes to accurately match the positions of O and B stars and, based on the Doppler shifts in the radio spectrum, determine their speed. After performing such operations on many stars, scientists were able to produce combined radio and optical maps of the Milky Way's spiral arms. Each arm is named after the constellation that exists in it.

Astronomers believe that the movement of matter around the center of the galaxy creates density waves (regions of high and low density), just like you see when you mix cake dough with an electric mixer. These density waves are thought to have caused the spiral character of the galaxy.

Thus, by examining the sky at different wavelengths (radio, infrared, visible, ultraviolet, X-ray) using various ground-based and space telescopes, one can obtain various images of the Milky Way.

Doppler effect. Just as the high pitched sound of a fire truck siren gets lower as the vehicle moves away, the movement of the stars affects the wavelengths of light that reach Earth from them. This phenomenon is called the Doppler effect. We can measure this effect by measuring the lines in the star's spectrum and comparing them to the spectrum of a standard lamp. The degree of Doppler shift indicates how fast the star is moving relative to us. In addition, the direction of the Doppler shift can show us the direction in which the star is moving. If the star's spectrum shifts to the blue end, then the star is moving towards us; if in the red direction, it moves away.

Structure of the Milky Way

If we carefully consider the structure of the Milky Way, we will see the following:

  1. galactic disk. Most of the stars in the Milky Way are concentrated here.

The disk itself is divided into the following parts:

  • The nucleus is the center of the disk;
  • Arcs - areas around the nucleus, including directly the areas above and below the plane of the disk.
  • Spiral arms are areas that protrude outward from the center. Our solar system is located in one of the spiral arms of the Milky Way.
  1. globular clusters. Several hundred of them are scattered above and below the plane of the disk.
  2. Halo. This is a large, dim region that surrounds the entire galaxy. The halo consists of high temperature gas and possibly dark matter.

The radius of the halo is much larger than the size of the disk and, according to some data, reaches several hundred thousand light-years. The center of symmetry of the Milky Way halo coincides with the center of the galactic disk. The halo consists mainly of very old, dim stars. The age of the spherical component of the Galaxy exceeds 12 billion years. The central, densest part of the halo within a few thousand light-years of the center of the Galaxy is called bulge(translated from English "thickening"). The halo as a whole rotates very slowly.

Compared to halo disk spins much faster. It looks like two plates folded at the edges. The diameter of the disk of the Galaxy is about 30 kpc (100,000 light years). The thickness is about 1000 light years. The rotation speed is not the same at different distances from the center. It rapidly increases from zero in the center to 200-240 km/s at a distance of 2 thousand light years from it. The mass of the disk is 150 billion times the mass of the Sun (1.99*1030 kg). Young stars and star clusters are concentrated in the disk. There are many bright and hot stars among them. The gas in the disk of the Galaxy is unevenly distributed, forming giant clouds. Hydrogen is the main chemical element in our galaxy. About 1/4 of it consists of helium.

One of the most interesting regions of the Galaxy is its center, or core located in the direction of the constellation Sagittarius. The visible radiation of the central regions of the Galaxy is completely hidden from us by powerful layers of absorbing matter. Therefore, it began to be studied only after the creation of receivers for infrared and radio radiation, which is absorbed to a lesser extent. The central regions of the Galaxy are characterized by a strong concentration of stars: there are many thousands of them in each cubic parsec. Closer to the center, regions of ionized hydrogen and numerous sources of infrared radiation are noted, indicating star formation taking place there. At the very center of the Galaxy, the existence of a massive compact object is assumed - a black hole with a mass of about a million solar masses.

One of the most notable formations is spiral branches (or sleeves). They gave the name to this type of objects - spiral galaxies. Along the arms, the youngest stars are mainly concentrated, many open star clusters, as well as chains of dense clouds of interstellar gas in which stars continue to form. In contrast to the halo, where any manifestations of stellar activity are extremely rare, a stormy life continues in the branches, associated with the continuous transition of matter from interstellar space to stars and back. The spiral arms of the Milky Way are largely hidden from us by absorbing matter. Their detailed study began after the advent of radio telescopes. They made it possible to study the structure of the Galaxy by observing the radio emission of interstellar hydrogen atoms, which are concentrated along long spirals. According to modern concepts, spiral arms are associated with compression waves propagating across the disk of the galaxy. Passing through the compression regions, the matter of the disk becomes denser, and the formation of stars from the gas becomes more intense. The reasons for the appearance of such a peculiar wave structure in the disks of spiral galaxies are not entirely clear. Many astrophysicists are working on this problem.

The place of the sun in the galaxy

In the vicinity of the Sun, it is possible to trace sections of two spiral branches that are about 3 thousand light years away from us. According to the constellations where these areas are found, they are called the Sagittarius arm and the Perseus arm. The sun is almost in the middle between these spiral arms. True, relatively close (by galactic standards) from us, in the constellation of Orion, there is another, not so pronounced branch, which is considered an offshoot of one of the main spiral arms of the Galaxy.

The distance from the Sun to the center of the Galaxy is 23-28 thousand light years, or 7-9 thousand parsecs. This suggests that the Sun is located closer to the edge of the disk than to its center.

Together with all nearby stars, the Sun revolves around the center of the Galaxy at a speed of 220–240 km/s, making one revolution in about 200 million years. This means that for the entire time of its existence, the Earth flew around the center of the Galaxy no more than 30 times.

The speed of rotation of the Sun around the center of the Galaxy practically coincides with the speed with which the compression wave, which forms the spiral arm, moves in the given region. Such a situation is generally unusual for the Galaxy: the spiral arms rotate at a constant angular velocity, like the spokes of a wheel, while the movement of stars, as we have seen, obeys a completely different pattern. Therefore, almost the entire stellar population of the disk either gets inside the spiral branch or leaves it. The only place where the speeds of stars and spiral arms coincide is the so-called corotation circle, and it is on it that the Sun is located!

For the Earth, this circumstance is extremely favorable. After all, violent processes occur in the spiral branches, generating powerful radiation, destructive for all living things. And no atmosphere could protect him from it. But our planet exists in a relatively quiet place in the Galaxy and has not experienced the influence of these cosmic cataclysms for hundreds of millions and billions of years. Perhaps that is why life could originate and survive on Earth.

For a long time, the position of the Sun among the stars was considered the most ordinary. Today we know that this is not so: in a certain sense it is privileged. And this must be taken into account when discussing the possibility of the existence of life in other parts of our Galaxy.

The location of the stars

On a cloudless night sky, the Milky Way is visible from anywhere on our planet. However, only a part of the Galaxy, which is a system of stars located inside the Orion arm, is accessible to the human eye. What is the Milky Way? The definition in space of all its parts becomes most understandable if we consider the star map. In this case, it becomes clear that the Sun, illuminating the Earth, is located almost on the disk. This is almost the edge of the Galaxy, where the distance from the nucleus is 26-28 thousand light years. Moving at a speed of 240 kilometers per hour, the Luminary spends 200 million years on one revolution around the core, so that for the entire time of its existence it traveled across the disk, rounding the core, only thirty times. Our planet is in the so-called corotation circle. This is a place in which the speed of rotation of the arms and stars are identical. This circle is characterized by an increased level of radiation. That is why life, as scientists believe, could only arise on that planet, near which there is a small number of stars. Our Earth is such a planet. It is located on the periphery of the Galaxy, in its most peaceful place. That is why on our planet for several billion years there were no global cataclysms that often occur in the Universe.

What will the death of the Milky Way look like?

The cosmic story of the death of our galaxy begins here and now. We can blindly look around, thinking that the Milky Way, Andromeda (our older sister) and a bunch of unknowns - our cosmic neighbors - this is our home, but in reality there is much more. It's time to explore what else is around us. Go.

  • Triangulum Galaxy. With a mass of about 5% of that of the Milky Way, it is the third largest galaxy in the Local Group. It has a spiral structure, its own satellites and may be a satellite of the Andromeda galaxy.
  • Large Magellanic Cloud. This galaxy is only 1% of the mass of the Milky Way, but is the fourth largest in our local group. It is very close to our Milky Way—less than 200,000 light-years away—and is undergoing active star formation as tidal interactions with our galaxy cause gas to collapse and create new, hot, and large stars in the universe.
  • Small Magellanic Cloud, NGC 3190 and NGC 6822. All of them have masses from 0.1% to 0.6% of the Milky Way (and it is not clear which one is larger) and all three are independent galaxies. Each contains over a billion solar masses of material.
  • Elliptical galaxies M32 and M110. They may be "only" satellites of Andromeda, but each of them has more than a billion stars, and they can even exceed the masses of numbers 5, 6 and 7.

In addition, there are at least 45 other known galaxies - smaller ones - that make up our local group. Each of them has a halo of dark matter surrounding it; each of them is gravitationally attached to the other, located at a distance of 3 million light years. Despite their size, mass and size, none of them will remain in a few billion years.

So the main thing

As time passes, galaxies interact gravitationally. They not only pull together due to gravitational attraction, but also interact tidally. We usually talk about tides in the context of the Moon pulling on Earth's oceans and creating tides, and this is partly true. But from the point of view of the galaxy, the tides are a less noticeable process. The part of the small galaxy that is close to the big one will be attracted with more gravitational force, and the part that is further away will experience less attraction. As a result, the small galaxy will stretch out and eventually break apart under the influence of gravity.

Small galaxies that are part of our local group, including both Magellanic Clouds and dwarf elliptical galaxies, will be torn apart in this way, and their material will be incorporated into the large galaxies with which they merge. “So what,” you say. After all, this is not quite death, because large galaxies will remain alive. But even they will not exist forever in this state. In 4 billion years, the mutual gravitational pull of the Milky Way and Andromeda will drag the galaxies into a gravitational dance that will lead to a big merger. Although this process will take billions of years, the spiral structure of both galaxies will be destroyed, resulting in the creation of a single, giant elliptical galaxy at the core of our local group: the Milkweeds.

A small percentage of the stars will be ejected during such a merger, but the majority will remain unharmed, and there will be a large burst of star formation. Eventually, the rest of the galaxies in our local group will also be sucked in, leaving one big giant galaxy to gobble up the rest. This process will take place in all connected groups and clusters of galaxies throughout the Universe, while dark energy will push individual groups and clusters apart from each other. But even this cannot be called death, because the galaxy will remain. And for a while it will be. But the galaxy is made up of stars, dust and gas, and everything will eventually come to an end.

Across the Universe, galactic mergers will take place over tens of billions of years. During the same time, dark energy will pull them all over the Universe to a state of complete solitude and inaccessibility. And although the last galaxies outside our local group will not disappear until hundreds of billions of years have passed, the stars in them will live. The longest-lived stars in existence today will continue to burn their fuel for tens of trillions of years, and new stars will emerge from the gas, dust, and stellar corpses that populate each galaxy—albeit with fewer and fewer.

When the last stars burn out, only their corpses will remain - white dwarfs and neutron stars. They will shine for hundreds of trillions or even quadrillions of years before they go out. When that inevitability happens, we're left with brown dwarfs (failed stars) that accidentally fuse, re-ignite nuclear fusion, and create starlight for tens of trillions of years.

When the last star goes out tens of quadrillion years in the future, there will still be some mass left in the galaxy. So this can not be called "true death."

All masses gravitationally interact with each other, and gravitational objects of different masses exhibit strange properties when interacting:

  • Repeated "approaches" and close passes cause exchanges of speed and momentum between them.
  • Objects with low mass are ejected from the galaxy, and objects with higher mass sink into the center, losing speed.
  • Over a sufficiently long period of time, most of the mass will be ejected, and only a small part of the remaining mass will be firmly attached.

At the very center of these galactic remnants will be a supermassive black hole, in every galaxy, and the rest of the galactic objects will orbit a larger version of our own solar system. Of course, this structure will be the last, and since the black hole will be as large as possible, it will eat everything it can reach. At the center of Mlecomeda there will be an object hundreds of millions of times more massive than our Sun.

But will it end too?

Thanks to the phenomenon of Hawking radiation, even these objects will one day decay. It will take about 10 80 to 10 100 years, depending on how massive our supermassive black hole becomes as it grows, but the end is coming. After that, the remains, rotating around the galactic center, will untie and leave only a halo of dark matter, which can also randomly dissociate, depending on the properties of this very matter. Without any matter, there will be nothing that we once called the local group, the Milky Way and other dear names.

Mythology

Armenian, Arabic, Wallachian, Jewish, Persian, Turkish, Kyrgyz

According to one of the Armenian myths about the Milky Way, the god Vahagn, the ancestor of the Armenians, stole straw from the ancestor of the Assyrians, Barsham, in a harsh winter and disappeared into the sky. When he walked with his prey across the sky, he dropped straws on his way; from them a light trail was formed in the sky (in Armenian “Straw thief’s road”). The myth about scattered straw is also spoken of by Arabic, Jewish, Persian, Turkish and Kyrgyz names (Kirg. samanchynyn jolu- the path of the strawman) of this phenomenon. The inhabitants of Wallachia believed that Venus stole this straw from St. Peter.

Buryat

According to Buryat mythology, good forces create the world, modify the universe. Thus, the Milky Way arose from the milk that Manzan Gurme drew from her breast and splashed out after Abai Geser, who had deceived her. According to another version, the Milky Way is a "seam of the sky" sewn up after the stars fell out of it; on it, like on a bridge, tengri walk.

Hungarian

According to Hungarian legend, Attila will descend the Milky Way if the Székelys are in danger; the stars represent sparks from the hooves. Milky Way. accordingly, it is called the "road of warriors."

ancient greek

Etymology of the word Galaxias (Γαλαξίας) and its association with milk (γάλα) reveal two similar ancient Greek myths. One of the legends tells about the mother's milk spilled across the sky of the goddess Hera, who was breastfeeding Hercules. When Hera learned that the baby she was breastfeeding was not her own child, but the illegitimate son of Zeus and an earthly woman, she pushed him away, and the spilled milk became the Milky Way. Another legend says that the spilled milk is the milk of Rhea, the wife of Kronos, and Zeus himself was the baby. Kronos devoured his children, as it was predicted to him that he would be overthrown by his own son. Rhea has a plan to save her sixth child, the newborn Zeus. She wrapped a stone in baby clothes and slipped it to Kronos. Kronos asked her to feed her son one more time before he swallowed him. The milk spilled from Rhea's chest on a bare rock was subsequently called the Milky Way.

Indian

The ancient Indians considered the Milky Way to be the milk of an evening red cow passing through the sky. In the Rig Veda, the Milky Way is called Aryaman's Throne Road. The Bhagavata Purana contains a version according to which the Milky Way is the belly of a celestial dolphin.

Inca

The main objects of observation in Inca astronomy (which was reflected in their mythology) in the sky were the dark sections of the Milky Way - a kind of "constellation" in the terminology of Andean cultures: Lama, Lama Cub, Shepherd, Condor, Partridge, Toad, Snake, Fox; as well as the stars: the Southern Cross, the Pleiades, Lyra and many others.

Ketskaya

In the Ket myths, similarly to the Selkup ones, the Milky Way is described as the road of one of the three mythological characters: the Son of Heaven (Esya), who went to hunt on the western side of the sky and froze there, the hero Albe, who pursued the evil goddess, or the first shaman Dokh, who climbed this road to the sun.

Chinese, Vietnamese, Korean, Japanese

In the mythologies of the Sinosphere, the Milky Way is called and compared with a river (in Vietnamese, Chinese, Korean and Japanese, the name “silver river” is retained. The Chinese also sometimes called the Milky Way “Yellow Road”, according to the color of straw.

Indigenous peoples of North America

The Hidatsa and the Eskimos call the Milky Way "Ash". Their myths speak of a girl who scattered ashes across the sky so that people could find their way home at night. The Cheyenne believed that the Milky Way was dirt and silt raised by the belly of a turtle floating in the sky. Eskimos from the Bering Strait - that these are the traces of the Creator Raven walking across the sky. The Cherokee believed that the Milky Way was formed when one hunter stole another's wife out of jealousy, and her dog began to eat unattended cornmeal and scattered it across the sky (the same myth is found among the Khoisan population of the Kalahari). Another myth of the same people says that the Milky Way is the trail of a dog dragging something across the sky. The Ctunah called the Milky Way "the dog's tail", the Blackfoot called it the "wolf road". Wyandot myth says that the Milky Way is a place where the souls of dead people and dogs come together and dance.

Maori

In Maori mythology, the Milky Way is considered to be the Tama-rereti boat. The nose of the boat is the constellation Orion and Scorpio, the anchor is the Southern Cross, Alpha Centauri and Hadar are the rope. According to legend, one day Tama-rereti was sailing in his canoe and saw that it was already late, and he was far from home. There were no stars in the sky, and, fearing that Tanif might attack, Tama-rereti began to throw sparkling pebbles into the sky. The heavenly deity Ranginui liked what he was doing, and he placed the Tama-rereti boat in the sky, and turned the pebbles into stars.

Finnish, Lithuanian, Estonian, Erzya, Kazakh

The Finnish name is Fin. Linnunrata- means "The Way of the Birds"; the Lithuanian name has a similar etymology. Estonian myth also connects the Milky ("bird's") Way with bird flight.

The Erzya name is "Kargon Ki" ("Crane Road").

The Kazakh name is “Kus Zholy” (“Way of the Birds”).

Interesting facts about the Milky Way galaxy

  • The Milky Way began forming as a cluster of dense regions after the Big Bang. The first stars to appear were in globular clusters that continue to exist. These are the oldest stars in the galaxy;
  • The galaxy has increased its parameters by absorbing and merging with others. Now she is picking stars from the Sagittarius Dwarf Galaxy and the Magellanic Clouds;
  • The Milky Way moves in space with an acceleration of 550 km / s with respect to the background radiation;
  • Lurking at the galactic center is the supermassive black hole Sagittarius A*. By mass, it is 4.3 million times greater than the solar one;
  • Gas, dust and stars revolve around the center at a speed of 220 km/s. This is a stable indicator, implying the presence of a shell of dark matter;
  • In 5 billion years, a collision with the Andromeda galaxy is expected.