Másodfokú egyenletek. Másodfokú egyenletek megoldása. Hogyan lehet másodfokú egyenleteket megoldani

A másodfokú egyenleteket 8. osztályban tanulmányozzák, tehát nincs itt semmi bonyolult. Ezek megoldásának képessége elengedhetetlen.

Másodfokú egyenlet egy ax 2 + bx + c = 0 alakú egyenlet, ahol az a , b és c együtthatók tetszőleges számok, és a ≠ 0.

A konkrét megoldási módszerek tanulmányozása előtt megjegyezzük, hogy minden másodfokú egyenlet három osztályba osztható:

  1. Nincsenek gyökerei;
  2. Pontosan egy gyökerük van;
  3. Két különböző gyökerük van.

Ez egy fontos különbség a másodfokú és a lineáris egyenletek között, ahol a gyök mindig létezik és egyedi. Hogyan határozható meg, hogy egy egyenletnek hány gyöke van? Van ebben egy csodálatos dolog - diszkriminatív.

Diszkrimináns

Legyen adott az ax 2 + bx + c = 0 másodfokú egyenlet, ekkor a diszkrimináns egyszerűen a D = b 2 − 4ac szám.

Ezt a képletet fejből kell tudni. Hogy honnan származik, az most nem fontos. Egy másik fontos dolog: a diszkrimináns előjelével meghatározhatja, hogy hány gyöke van egy másodfokú egyenletnek. Ugyanis:

  1. Ha D< 0, корней нет;
  2. Ha D = 0, akkor pontosan egy gyök van;
  3. Ha D > 0, akkor két gyök lesz.

Kérjük, vegye figyelembe: a diszkrimináns a gyökerek számát jelöli, és egyáltalán nem a jeleiket, ahogyan azt valamiért sokan gondolják. Vessen egy pillantást a példákra, és mindent meg fog érteni:

Feladat. Hány gyöke van a másodfokú egyenleteknek:

  1. x 2 - 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Felírjuk az első egyenlet együtthatóit, és megkeressük a diszkriminánst:
a = 1, b = -8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

Tehát a diszkrimináns pozitív, tehát az egyenletnek két különböző gyökere van. Ugyanígy elemezzük a második egyenletet:
a = 5; b = 3; c=7;
D \u003d 3 2 - 4 5 7 \u003d 9 - 140 \u003d -131.

A diszkrimináns negatív, nincsenek gyökerei. Az utolsó egyenlet marad:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

A diszkrimináns egyenlő nullával - a gyökér egy lesz.

Vegye figyelembe, hogy minden egyenlethez együtthatók vannak kiírva. Igen, hosszú, igen, unalmas – de nem fogod összekeverni az esélyeket, és nem követsz el hülye hibákat. Válassz magadnak: sebesség vagy minőség.

Mellesleg, ha „megtölti a kezét”, egy idő után már nem kell kiírnia az összes együtthatót. Ilyen műveleteket hajt végre a fejében. A legtöbb ember ezt valahol 50-70 megoldott egyenlet után kezdi el – általában nem annyira.

A másodfokú egyenlet gyökerei

Most térjünk át a megoldásra. Ha a diszkrimináns D > 0, akkor a gyökök a következő képletekkel kereshetők:

A másodfokú egyenlet gyökeinek alapképlete

Ha D = 0, bármelyik képletet használhatja - ugyanazt a számot kapja, amely lesz a válasz. Végül, ha D< 0, корней нет — ничего считать не надо.

  1. x 2 - 2x - 3 = 0;
  2. 15 - 2x - x2 = 0;
  3. x2 + 12x + 36 = 0.

Első egyenlet:
x 2 - 2x - 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ az egyenletnek két gyöke van. Keressük meg őket:

Második egyenlet:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 (−1) 15 = 64.

D > 0 ⇒ az egyenletnek ismét két gyöke van. Keressük meg őket

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(igazítás)\]

Végül a harmadik egyenlet:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ az egyenletnek egy gyöke van. Bármilyen képlet használható. Például az első:

Amint a példákból látható, minden nagyon egyszerű. Ha ismeri a képleteket és tud számolni, akkor nem lesz probléma. Leggyakrabban akkor fordulnak elő hibák, amikor negatív együtthatókat helyettesítenek be a képletbe. Itt ismét a fent leírt technika segít: nézze meg a képletet szó szerint, fesse le minden lépést - és gyorsan megszabaduljon a hibáktól.

Hiányos másodfokú egyenletek

Előfordul, hogy a másodfokú egyenlet némileg eltér a definícióban megadottól. Például:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Könnyen belátható, hogy az egyik kifejezés hiányzik ezekből az egyenletekből. Az ilyen másodfokú egyenleteket még könnyebb megoldani, mint a szabványosakat: még a diszkriminánst sem kell kiszámítani. Tehát vezessünk be egy új koncepciót:

Az ax 2 + bx + c = 0 egyenletet nem teljes másodfokú egyenletnek nevezzük, ha b = 0 vagy c = 0, azaz. az x változó vagy a szabad elem együtthatója nullával egyenlő.

Természetesen nagyon nehéz eset lehetséges, ha mindkét együttható nulla: b \u003d c \u003d 0. Ebben az esetben az egyenlet ax 2 \u003d 0 alakot vesz fel. Nyilvánvaló, hogy egy ilyen egyenletnek egyetlen gyöke van: x \u003d 0.

Nézzünk más eseteket. Legyen b \u003d 0, akkor egy hiányos másodfokú egyenletet kapunk ax 2 + c \u003d 0 alakban. Transzformáljuk kissé:

Mert az aritmetika Négyzetgyök csak től létezik negatív szám, az utolsó egyenlőségnek csak akkor van értelme, ha (−c /a ) ≥ 0. Következtetés:

  1. Ha egy ax 2 + c = 0 formájú nem teljes másodfokú egyenlet kielégíti a (−c / a ) ≥ 0 egyenlőtlenséget, akkor két gyöke lesz. A képlet fent van megadva;
  2. Ha (-c / a )< 0, корней нет.

Amint látja, a diszkriminánsra nem volt szükség – a hiányos másodfokú egyenletekben egyáltalán nincsenek bonyolult számítások. Valójában nem is szükséges emlékezni a (−c / a ) ≥ 0 egyenlőtlenségre. Elég, ha kifejezzük x 2 értékét, és megnézzük, mi van az egyenlőségjel másik oldalán. Ha van pozitív szám, akkor két gyöke lesz. Ha negatív, akkor egyáltalán nem lesznek gyökerei.

Most foglalkozzunk az ax 2 + bx = 0 alakú egyenletekkel, amelyekben a szabad elem egyenlő nullával. Itt minden egyszerű: mindig két gyökér lesz. Elegendő a polinomot faktorozni:

A közös tényezőt kivesszük a zárójelből

A szorzat akkor egyenlő nullával, ha legalább az egyik tényező nulla. Innen erednek a gyökerek. Végezetül az alábbi egyenleteket elemezzük:

Feladat. Másodfokú egyenletek megoldása:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x 2 − 7x = 0 ⇒ x (x - 7) = 0 ⇒ x 1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = -30 ⇒ x2 = -6. Nincsenek gyökerek, mert a négyzet nem lehet egyenlő negatív számmal.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 \u003d -1,5.

Típusegyenlet

Kifejezés D= b 2 - 4ac hívott diszkriminatív másodfokú egyenlet. HaD = 0, akkor az egyenletnek egy valós gyöke van; ha D> 0, akkor az egyenletnek két valós gyöke van.
Abban az esetben, ha D = 0 , néha azt mondják, hogy egy másodfokú egyenletnek két azonos gyökere van.
A jelölés használata D= b 2 - 4ac, a (2) képlet átírható így

Ha b= 2 k, akkor a (2) képlet a következő alakot veszi fel:

Ahol k= b / 2 .
Az utolsó képlet különösen kényelmes, ha b / 2 egy egész szám, azaz. együttható b- páros szám.
1. példa: oldja meg az egyenletet 2 x 2 - 5 x + 2 = 0 . Itt a=2, b=-5, c=2. Nekünk van D= b 2 - 4ac = (-5) 2- 4*2*2 = 9 . Mert D > 0 , akkor az egyenletnek két gyöke van. Keressük meg őket a (2) képlettel!

Így x 1 =(5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
vagyis x 1 = 2 És x 2 = 1 / 2 - gyökerek adott egyenlet.
2. példa: oldja meg az egyenletet 2 x 2 - 3x + 5 = 0 . Itt a=2, b=-3, c=5. A diszkrimináns megtalálása D= b 2 - 4ac = (-3) 2- 4*2*5 = -31 . Mert D 0 , akkor az egyenletnek nincs valódi gyökere.

Hiányos másodfokú egyenletek. Ha másodfokú egyenletben fejsze 2 +bx+c =0 második tényező b vagy szabad tag c egyenlő nullával, akkor a másodfokú egyenletet nevezzük befejezetlen. A hiányos egyenleteket azért különböztetjük meg, mert a gyökereik megtalálásához nem használhatja a másodfokú egyenlet gyökeinek képletét - az egyenletet könnyebb megoldani, ha bal oldalát faktorokba veszi.
1. példa: oldja meg az egyenletet 2 x 2 - 5x = 0 .
Nekünk van x(2x - 5) = 0 . Tehát akár x = 0 , vagy 2 x - 5 = 0 , vagyis x = 2.5 . Tehát az egyenletnek két gyökere van: 0 És 2.5
2. példa: oldja meg az egyenletet 3 x 2 - 27 = 0 .
Nekünk van 3 x 2 = 27 . Ezért ennek az egyenletnek a gyökerei 3 És -3 .

Vieta tétele. Ha az adott másodfokú egyenlet x 2 +px+ q =0 valódi gyökerei vannak, akkor összegük egyenlő - p, és a termék az q, vagyis

x 1 + x 2 \u003d -p,
x 1 x 2 = q

(az adott másodfokú egyenlet gyökeinek összege egyenlő az ellenkező előjellel felvett második együtthatóval, a gyökök szorzata pedig egyenlő a szabad taggal).

Az egyenletek megoldása a matematikában különleges helyet foglal el. Ezt a folyamatot sok órányi elmélettanulás előzi meg, amely során a hallgató megtanulja, hogyan kell egyenleteket megoldani, meghatározni azok formáját, és a készséget teljes automatizmusba vinni. A gyökerek keresésének azonban nem mindig van értelme, mivel előfordulhat, hogy egyszerűen nem léteznek. Vannak speciális módszerek a gyökerek megtalálására. Ebben a cikkben elemezzük a fő funkciókat, azok definíciós területeit, valamint azokat az eseteket, amikor a gyökereik hiányoznak.

Melyik egyenletnek nincs gyöke?

Egy egyenletnek nincs gyökere, ha nincsenek valódi x argumentumok, amelyekre az egyenlet azonosan igaz. Egy nem szakember számára ez a megfogalmazás, mint a legtöbb matematikai tétel és képlet, nagyon homályosnak és elvontnak tűnik, de ez elméletben van. A gyakorlatban minden rendkívül egyszerűvé válik. Például: a 0 * x = -53 egyenletnek nincs megoldása, hiszen nincs olyan x szám, amelynek nullával való szorzata mást adna, mint nulla.

Most a legalapvetőbb egyenlettípusokat nézzük meg.

1. Lineáris egyenlet

Egy egyenletet lineárisnak nevezünk, ha jobb és bal oldalát a következőképpen ábrázoljuk lineáris függvények: ax + b \u003d cx + d vagy általánosított formában kx + b \u003d 0. Ahol a, b, c, d ismert számok, x pedig ismeretlen érték. Melyik egyenletnek nincs gyöke? A lineáris egyenletek példái az alábbi ábrán láthatók.

A lineáris egyenleteket alapvetően úgy oldják meg, hogy a numerikus részt egyszerűen átvisszük az egyik részre, és az x tartalmát a másikba. Kiderül, hogy egy mx \u003d n alakú egyenlet, ahol m és n számok, x pedig ismeretlen. Az x megtalálásához elegendő mindkét részt elosztani m-mel. Ekkor x = n/m. Alapvetően a lineáris egyenleteknek csak egy gyöke van, de vannak esetek, amikor végtelen sok gyök van, vagy nincs is. Ha m = 0 és n = 0, az egyenlet a következőt ölti: 0 * x = 0. Egy ilyen egyenletre abszolút bármely szám megoldása lehet.

De melyik egyenletnek nincs gyökere?

M = 0 és n = 0 esetén az egyenletnek nincs gyökere a valós számok halmazából. 0 * x = -1; 0 * x = 200 - ezeknek az egyenleteknek nincs gyökere.

2. Másodfokú egyenlet

A másodfokú egyenlet ax 2 + bx + c \u003d 0 formájú egyenlet \u003d 0 esetén. A leggyakoribb a diszkriminánson keresztüli megoldás. A másodfokú egyenlet diszkriminánsának megtalálásának képlete: D \u003d b 2 - 4 * a * c. Ezután két gyök van x 1,2 = (-b ± √D) / 2 * a.

D > 0 esetén az egyenletnek két, D = 0 esetén egy gyöke van. De melyik másodfokú egyenletnek nincs gyökere? A másodfokú egyenlet gyökeinek számát a legegyszerűbben egy függvény grafikonján lehet megfigyelni, amely egy parabola. A > 0 esetén az ágak felfelé, a esetén az ágak irányulnak< 0 ветви опущены вниз. Если дискриминант отрицателен, такое квадратное уравнение не имеет корней на множестве действительных чисел.

A gyökerek számát vizuálisan is meghatározhatja a diszkrimináns kiszámítása nélkül. Ehhez meg kell találnia a parabola tetejét, és meg kell határoznia, hogy az ágak melyik irányba vannak irányítva. A csúcs x-koordinátáját a következő képlettel határozhatja meg: x 0 \u003d -b / 2a. Ebben az esetben a csúcs y-koordinátáját úgy találjuk meg, hogy az x0 értéket egyszerűen behelyettesítjük az eredeti egyenletbe.

Az x 2 - 8x + 72 = 0 másodfokú egyenletnek nincs gyöke, mivel negatív diszkriminánsa van D = (-8) 2 - 4 * 1 * 72 = -224. Ez azt jelenti, hogy a parabola nem érinti az x tengelyt, és a függvény soha nem vesz fel 0 értéket, ezért az egyenletnek nincs valódi gyökere.

3. Trigonometrikus egyenletek

A trigonometrikus függvényeket trigonometrikus körön tekintjük, de ábrázolhatók derékszögű koordinátarendszerben is. Ebben a cikkben két fő elemet fogunk megvizsgálni trigonometrikus függvényekés egyenleteik: sinx és cosx. Mivel ezek a függvények egy 1 sugarú trigonometrikus kört alkotnak, |sinx| és |cosx| nem lehet nagyobb 1-nél. Tehát melyik sinx egyenletnek nincs gyöke? Tekintsük a grafikont sinx függvények az alábbi képen látható.

Látjuk, hogy a függvény szimmetrikus, és ismétlési periódusa 2pi. Ez alapján elmondhatjuk, hogy ennek a függvénynek a maximális értéke 1, a minimuma pedig -1 lehet. Például a cosx = 5 kifejezésnek nem lesz gyöke, mivel abszolút értékben nagyobb egynél.

Ez a trigonometrikus egyenletek legegyszerűbb példája. Valójában sok oldalig tarthat a megoldásuk, aminek a végén rájössz, hogy rossz képletet használtál, és elölről kell kezdened. Néha még a gyökerek helyes megtalálása esetén is elfelejtheti figyelembe venni az ODZ korlátozásait, amelyek miatt egy extra gyök vagy intervallum jelenik meg a válaszban, és az egész válasz hibássá válik. Ezért szigorúan tartsa be az összes korlátozást, mert nem minden gyökér illeszkedik a feladat körébe.

4. Egyenletrendszerek

Az egyenletrendszer göndör vagy szögletes zárójelekkel kombinált egyenletkészlet. A göndör kapcsos zárójelek az összes egyenlet együttes végrehajtását jelölik. Vagyis ha legalább az egyik egyenletnek nincs gyökere, vagy ellentmond a másiknak, akkor az egész rendszernek nincs megoldása. A szögletes zárójelek a „vagy” szót jelölik. Ez azt jelenti, hogy ha a rendszer legalább egy egyenletének van megoldása, akkor az egész rendszernek van megoldása.

A c rendszer válasza az egyes egyenletek gyökeinek összessége. A göndör fogszabályzós rendszereknek pedig csak közös gyökerei vannak. Az egyenletrendszerek teljesen különböző függvényeket tartalmazhatnak, így ez a bonyolultság nem teszi lehetővé, hogy azonnal megmondjuk, melyik egyenletnek nincs gyökere.

A problémakönyvekben és a tankönyvekben különböző típusú egyenletek vannak: azok, amelyeknek van gyökere, és olyanok, amelyeknek nincsenek. Először is, ha nem talál gyökereket, ne gondolja, hogy egyáltalán nem léteznek. Lehet, hogy valahol hibát követett el, akkor elég gondosan ellenőriznie a döntését.

Megvizsgáltuk a legalapvetőbb egyenleteket és azok típusait. Most megtudhatja, hogy melyik egyenletnek nincs gyökere. A legtöbb esetben ezt egyáltalán nem nehéz megtenni. Az egyenletek megoldásának sikeréhez csak figyelem és koncentráció szükséges. Gyakorolj többet, ez segít sokkal jobban és gyorsabban eligazodni az anyagban.

Tehát az egyenletnek nincs gyökere, ha:

  • az mx = n lineáris egyenletben m = 0 és n = 0;
  • másodfokú egyenletben, ha a diszkrimináns kisebb, mint nulla;
  • V trigonometrikus egyenlet cosx = m / sinx = n alakú, ha |m| > 0, |n| > 0;
  • szögletes zárójeles egyenletrendszerben, ha legalább egy egyenletnek nincs gyöke, és szögletes zárójelben, ha minden egyenletnek nincs gyöke.

A másodfokú egyenletre vonatkozó feladatokat az iskolai tantervben és az egyetemeken is tanulmányozzák. Ezek a * x ^ 2 + b * x + c \u003d 0 alakú egyenletek értendők, ahol x- változó, a,b,c – állandók; a<>0 . A probléma az egyenlet gyökereinek megtalálása.

A másodfokú egyenlet geometriai jelentése

A másodfokú egyenlettel ábrázolt függvény grafikonja parabola. A másodfokú egyenlet megoldásai (gyökei) a parabola és az x tengellyel való metszéspontok. Ebből következik, hogy három eset lehetséges:
1) a parabolának nincs metszéspontja az x tengellyel. Ez azt jelenti, hogy a felső síkban van ágakkal felfelé, vagy az alsó síkban lefelé ágakkal. Ilyen esetekben a másodfokú egyenletnek nincs valódi gyöke (két összetett gyöke van).

2) a parabolának van egy metszéspontja az Ox tengellyel. Az ilyen pontot a parabola csúcsának nevezzük, és a benne lévő másodfokú egyenlet elnyeri minimális vagy maximális értékét. Ebben az esetben a másodfokú egyenletnek egy valós gyöke (vagy két azonos gyöke) van.

3) Az utolsó eset a gyakorlatban érdekesebb - a parabolának két metszéspontja van az abszcissza tengellyel. Ez azt jelenti, hogy az egyenletnek két valódi gyöke van.

A változók hatványaihoz tartozó együtthatók elemzése alapján érdekes következtetések vonhatók le a parabola elhelyezéséről.

1) Ha az a együttható nullánál nagyobb, akkor a parabola felfelé, ha negatív, akkor a parabola ágai lefelé irányulnak.

2) Ha a b együttható nullánál nagyobb, akkor a parabola csúcsa a bal oldali félsíkban, ha negatív értéket vesz fel, akkor a jobb oldalon.

Másodfokú egyenlet megoldására szolgáló képlet levezetése

Vigyük át az állandót a másodfokú egyenletből

egyenlőségjelre a kifejezést kapjuk

Mindkét oldalt megszorozzuk 4a-val

Hogy balra teljes négyzet adjuk hozzá mindkét részhez b^2-t, és hajtsuk végre az átalakítást

Innen találjuk

A diszkrimináns képlete és a másodfokú egyenlet gyökei

A diszkrimináns a gyökkifejezés értéke, ha pozitív, akkor az egyenletnek két valós gyöke van, a képlettel számolva Ha a diszkrimináns nulla, akkor a másodfokú egyenletnek egy megoldása van (két egybeeső gyöke), ami könnyen megkapható a fenti képletből D=0 esetén. Ha a diszkrimináns negatív, az egyenletnek nincsenek valódi gyökei. A másodfokú egyenlet megoldásainak tanulmányozására azonban in összetett sík, értéküket pedig a képlet számítja ki

Vieta tétele

Tekintsünk egy másodfokú egyenlet két gyökerét, és ezek alapján alkossunk másodfokú egyenletet A jelölésből maga a Vieta-tétel is könnyen következik: ha megvan a forma másodfokú egyenlete. akkor gyökeinek összege egyenlő az ellenkező előjellel vett p együtthatóval, és az egyenlet gyökeinek szorzata egyenlő a q szabad taggal. A fenti képlet így fog kinézni. Ha a klasszikus egyenletben az a konstans nem nulla, akkor el kell osztania vele a teljes egyenletet, majd alkalmaznia kell a Vieta-tételt.

A másodfokú egyenlet ütemezése faktorokon

Legyen kitűzve a feladat: a másodfokú egyenlet faktorokra bontása. Ennek végrehajtásához először megoldjuk az egyenletet (keressük meg a gyököket). Ezután a talált gyököket behelyettesítjük a másodfokú egyenlet kibővítésére szolgáló képletbe, és ez a probléma megoldódik.

Feladatok másodfokú egyenlethez

1. feladat. Keresse meg a másodfokú egyenlet gyökereit!

x^2-26x+120=0 .

Megoldás: Írja fel az együtthatókat és helyettesítse be a diszkrimináns képletbe

Ennek az értéknek a gyöke 14, számológéppel könnyen megtalálható, vagy gyakori használat mellett megjegyezhető, azonban a kényelem kedvéért a cikk végén felsorolom azokat a számnégyzeteket, amelyek gyakran megtalálhatók az ilyen feladatokban.
A talált értéket a rendszer behelyettesíti a gyökképletbe

és megkapjuk

2. feladat. oldja meg az egyenletet

2x2+x-3=0.

Megoldás: Van egy teljes másodfokú egyenletünk, írjuk ki az együtthatókat és keressük meg a diszkriminánst


Ismert képletek segítségével megtaláljuk a másodfokú egyenlet gyökereit

3. feladat. oldja meg az egyenletet

9x2 -12x+4=0.

Megoldás: Van egy teljes másodfokú egyenletünk. Határozza meg a diszkriminánst

Azt az esetet kaptuk, amikor a gyökerek egybeesnek. A gyökök értékeit a képlet alapján találjuk meg

4. feladat. oldja meg az egyenletet

x^2+x-6=0 .

Megoldás: Azokban az esetekben, ahol kicsi az együttható x-hez, célszerű a Vieta-tételt alkalmazni. Feltételével két egyenletet kapunk

A második feltételből azt kapjuk, hogy a szorzatnak -6-nak kell lennie. Ez azt jelenti, hogy az egyik gyökér negatív. A következő lehetséges megoldáspárunk van(-3;2), (3;-2) . Az első feltételt figyelembe véve a második megoldáspárt elutasítjuk.
Az egyenlet gyökerei a következők

5. feladat Határozza meg egy téglalap oldalainak hosszát, ha kerülete 18 cm, területe 77 cm 2!

Megoldás: Egy téglalap kerületének fele egyenlő a szomszédos oldalak összegével. Jelöljük x-et - a nagyobb oldalt, majd 18-x a kisebbik oldala. Egy téglalap területe egyenlő a következő hosszúságok szorzatával:
x(18-x)=77;
vagy
x 2 -18x + 77 \u003d 0.
Keresse meg az egyenlet diszkriminánsát!

Kiszámoljuk az egyenlet gyökereit

Ha x=11, Hogy 18x=7, fordítva is igaz (ha x=7, akkor 21-x=9).

6. feladat Tényezőzzük a másodfokú 10x 2 -11x+3=0 egyenletet!

Megoldás: Számítsa ki az egyenlet gyökereit, ehhez megtaláljuk a diszkriminánst

A talált értéket behelyettesítjük a gyökképletbe, és kiszámítjuk

Alkalmazzuk a másodfokú egyenlet gyökekkel való bővítésének képletét

A zárójeleket kibontva megkapjuk az azonosságot.

Másodfokú egyenlet paraméterrel

Példa 1. A paraméter mely értékeire A , az (a-3) x 2 + (3-a) x-1 / 4 \u003d 0 egyenletnek egy gyöke van?

Megoldás: Az a=3 érték közvetlen helyettesítésével azt látjuk, hogy nincs megoldása. Továbbá azt a tényt fogjuk használni, hogy nulla diszkrimináns esetén az egyenletnek a 2 multiplicitás egyik gyöke van. Írjuk ki a diszkriminánst

leegyszerűsítjük és egyenlővé kell tenni a nullával

Az a paraméterre vonatkozóan egy másodfokú egyenletet kaptunk, melynek megoldása a Vieta-tétel segítségével könnyen megkapható. A gyökök összege 7, szorzatuk 12. Egyszerű felsorolással megállapítjuk, hogy a 3.4 számok lesznek az egyenlet gyökerei. Mivel a számítások elején már elvetettük az a=3 megoldást, az egyetlen helyes megoldás a következő lesz: a=4.Így a = 4 esetén az egyenletnek egy gyöke van.

Példa 2. A paraméter mely értékeire A , az egyenlet a(a+3)x^2+(2a+6)x-3a-9=0 egynél több gyökér van?

Megoldás: Tekintsük először a szinguláris pontokat, ezek az a=0 és a=-3 értékek lesznek. Ha a=0, az egyenlet 6x-9=0 alakra egyszerűsödik; x=3/2 és egy gyökér lesz. A= -3 esetén a 0=0 azonosságot kapjuk.
Számítsa ki a diszkriminánst!

és keresse meg a értékeit, amelyekre ez pozitív

Az első feltételből a>3-at kapunk. A másodikhoz megtaláljuk a diszkriminánst és az egyenlet gyökereit


Határozzuk meg azokat az intervallumokat, ahol a függvény pozitív értékeket vesz fel. Az a=0 pontot behelyettesítve azt kapjuk 3>0 . Tehát a (-3; 1/3) intervallumon kívül a függvény negatív. Ne felejtsd el a pontot a=0 amit ki kell zárni, mivel az eredeti egyenletnek egy gyöke van.
Ennek eredményeként két olyan intervallumot kapunk, amely kielégíti a probléma feltételét

A gyakorlatban sok hasonló feladat lesz, próbáljon meg maga is megbirkózni a feladatokkal, és ne felejtse el figyelembe venni az egymást kölcsönösen kizáró feltételeket. Tanulmányozza jól a másodfokú egyenletek megoldására szolgáló képleteket, gyakran van rájuk szükség a számításokban különféle problémákban és tudományokban.

Az „Egyenletek megoldása” téma folytatásaként a cikk anyaga bemutatja a másodfokú egyenleteket.

Tekintsünk meg mindent részletesen: a másodfokú egyenlet lényegét és jelölését, állítsuk be a kísérő feltételeket, elemezzük a hiányos és a megoldási sémát. teljes egyenletek, megismerkedünk a gyökök és a diszkrimináns képletével, kapcsolatokat létesítünk gyökök és együtthatók között, és természetesen gyakorlati példák vizuális megoldását is adjuk.

Yandex.RTB R-A-339285-1

Másodfokú egyenlet, típusai

1. definíció

Másodfokú egyenletígy van felírva az egyenlet a x 2 + b x + c = 0, Ahol x– változó, a , b és c néhány szám, míg a nem nulla.

A másodfokú egyenleteket gyakran másodfokú egyenleteknek is nevezik, mivel valójában egy másodfokú egyenlet algebrai egyenlet másodfokú.

Adjunk egy példát az adott definíció illusztrálására: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 stb. másodfokú egyenletek.

2. definíció

Számok a , b és c a másodfokú egyenlet együtthatói a x 2 + b x + c = 0, míg az együttható a nevezzük az első, vagy idősebb, vagy együttható x 2, b - a második együttható, vagy együttható at x, A c szabad tagnak nevezték.

Például a másodfokú egyenletben 6 x 2 - 2 x - 11 = 0 a legmagasabb együttható 6, a második együttható az − 2 , és a szabad tag egyenlő − 11 . Figyeljünk arra, hogy amikor az együtthatók bés/vagy c negatív, akkor a gyorsított alakot használjuk 6 x 2 - 2 x - 11 = 0, de nem 6 x 2 + (− 2) x + (− 11) = 0.

Tisztázzuk ezt a szempontot is: ha az együtthatók aés/vagy b egyenlő 1 vagy − 1 , akkor nem vehetnek kifejezetten részt a másodfokú egyenlet megírásában, amit a jelzett numerikus együtthatók felírásának sajátosságai magyaráznak. Például a másodfokú egyenletben y 2 − y + 7 = 0 a szenior együttható 1, a második pedig az − 1 .

Redukált és nem redukált másodfokú egyenletek

Az első együttható értéke szerint a másodfokú egyenleteket redukáltra és nem redukáltra osztjuk.

3. definíció

Csökkentett másodfokú egyenlet egy másodfokú egyenlet, ahol a vezető együttható 1 . A vezető együttható egyéb értékei esetében a másodfokú egyenlet redukálatlan.

Íme néhány példa: az x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0 másodfokú egyenletek redukálva vannak, amelyek mindegyikében a vezető együttható 1 .

9 x 2 - x - 2 = 0- redukálatlan másodfokú egyenlet, ahol az első együttható különbözik 1 .

Bármely redukálatlan másodfokú egyenlet átalakítható redukált egyenletté, ha mindkét részét elosztjuk az első együtthatóval (ekvivalens transzformáció). A transzformált egyenletnek ugyanazok a gyökerei lesznek, mint az adott nem redukált egyenletnek, vagy egyáltalán nem lesz gyöke.

Megfontolás esettanulmány lehetővé teszi számunkra, hogy vizuálisan demonstráljuk a redukálatlan másodfokú egyenletről a redukáltra való átmenetet.

1. példa

Adott a 6 x 2 + 18 x − 7 = 0 egyenlet . Az eredeti egyenletet redukált formára kell konvertálni.

Megoldás

A fenti séma szerint az eredeti egyenlet mindkét részét elosztjuk a 6 vezető együtthatóval. Akkor kapjuk: (6 x 2 + 18 x - 7) : 3 = 0:3, és ez ugyanaz, mint: (6 x 2) : 3 + (18 x) : 3 - 7: 3 = 0és tovább: (6:6) x 2 + (18:6) x − 7: 6 = 0 . Innen: x 2 + 3 x - 1 1 6 = 0 . Így az adott egyenletet kapjuk.

Válasz: x 2 + 3 x - 1 1 6 = 0 .

Teljes és nem teljes másodfokú egyenletek

Térjünk rá a másodfokú egyenlet definíciójára. Ebben azt határoztuk meg a ≠ 0. Hasonló feltétel szükséges az egyenlethez a x 2 + b x + c = 0 pontosan négyzet alakú volt, mivel a = 0 lényegében átalakul azzá lineáris egyenlet b x + c = 0.

Abban az esetben, ha az együtthatók bÉs c nullával egyenlőek (ami külön-külön és együttesen is lehetséges), a másodfokú egyenletet hiányosnak nevezzük.

4. definíció

Hiányos másodfokú egyenlet egy másodfokú egyenlet a x 2 + b x + c \u003d 0, ahol legalább az egyik együttható bÉs c(vagy mindkettő) nulla.

Teljes másodfokú egyenlet egy másodfokú egyenlet, amelyben az összes numerikus együttható nem egyenlő nullával.

Beszéljük meg, hogy a másodfokú egyenletek típusait miért adják pontosan ilyen elnevezéssel.

Ha b = 0, a másodfokú egyenlet a következő alakot veszi fel a x 2 + 0 x + c = 0, ami megegyezik a a x 2 + c = 0. Nál nél c = 0 a másodfokú egyenletet úgy írjuk fel a x 2 + b x + 0 = 0, ami egyenértékű a x 2 + b x = 0. Nál nél b = 0És c = 0 az egyenlet alakot vesz fel a x 2 = 0. Az általunk kapott egyenletek abban különböznek a teljes másodfokú egyenlettől, hogy bal oldaluk nem tartalmaz sem x változós tagot, sem szabad tagot, vagy mindkettőt egyszerre. Valójában ez a tény adta a nevet az ilyen típusú egyenleteknek - hiányos.

Például x 2 + 3 x + 4 = 0 és − 7 x 2 − 2 x + 1, 3 = 0 teljes másodfokú egyenletek; x 2 \u003d 0, − 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 nem teljes másodfokú egyenletek.

Hiányos másodfokú egyenletek megoldása

A fent megadott definíció lehetővé teszi a hiányos másodfokú egyenletek következő típusainak megkülönböztetését:

  • a x 2 = 0, együtthatók felelnek meg egy ilyen egyenletnek b = 0és c = 0;
  • a x 2 + c = 0 b \u003d 0 esetén;
  • a x 2 + b x = 0 c = 0 esetén.

Tekintsük egymás után az egyes nem teljes másodfokú egyenlettípusok megoldását.

Az a x 2 \u003d 0 egyenlet megoldása

Mint fentebb említettük, egy ilyen egyenlet megfelel az együtthatóknak bÉs c, egyenlő nullával. Az egyenlet a x 2 = 0 ekvivalens egyenletté alakítható x2 = 0, amelyet úgy kapunk, hogy az eredeti egyenlet mindkét oldalát elosztjuk a számmal a, nem egyenlő nullával. A nyilvánvaló tény az, hogy az egyenlet gyökere x2 = 0 nulla, mert 0 2 = 0 . Ennek az egyenletnek nincs más gyöke, amit a fok tulajdonságai magyaráznak: tetszőleges számra p , nem egyenlő nullával, az egyenlőtlenség igaz p2 > 0, amiből az következik, hogy mikor p ≠ 0 egyenlőség p2 = 0 soha nem fogják elérni.

5. definíció

Így az a x 2 = 0 nem teljes másodfokú egyenlethez van egy egyedi gyök x=0.

2. példa

Például oldjunk meg egy nem teljes másodfokú egyenletet − 3 x 2 = 0. Ez egyenértékű az egyenlettel x2 = 0, egyetlen gyökere az x=0, akkor az eredeti egyenletnek egyetlen gyöke - nulla.

A megoldást a következőképpen foglaljuk össze:

− 3 x 2 \u003d 0, x 2 = 0, x = 0.

Az a x 2 + c \u003d 0 egyenlet megoldása

A következő a sorban a hiányos másodfokú egyenletek megoldása, ahol b \u003d 0, c ≠ 0, vagyis a következő alakú egyenletek a x 2 + c = 0. Alakítsuk át ezt az egyenletet úgy, hogy átvisszük a tagot az egyenlet egyik oldaláról a másikra, az előjelet az ellenkezőjére változtatjuk, és az egyenlet mindkét oldalát elosztjuk egy olyan számmal, amely nem egyenlő nullával:

  • elviselni c jobb oldalra, ami megadja az egyenletet a x 2 = − c;
  • osszuk el az egyenlet mindkét oldalát a, eredményül kapjuk az x = - c a .

Transzformációink ekvivalensek, illetve a kapott egyenlet is ekvivalens az eredetivel, és ez a tény lehetővé teszi az egyenlet gyökereire vonatkozó következtetés levonását. Miből vannak az értékek aÉs c a kifejezés értékétől függ - c a: lehet mínusz jele (például ha a = 1És c = 2, akkor - c a = - 2 1 = - 2) vagy egy pluszjel (például ha a = -2És c=6, akkor - c a = - 6 - 2 = 3); nem egyenlő a nullával, mert c ≠ 0. Lazítsunk részletesebben azokon a helyzeteken, amikor - c a< 0 и - c a > 0 .

Abban az esetben, ha - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа p p 2 = - c a egyenlőség nem lehet igaz.

Minden más, ha - c a > 0: emlékezzen a négyzetgyökre, és nyilvánvalóvá válik, hogy az x 2 \u003d - c a egyenlet gyöke a - c a szám lesz, mivel - c a 2 \u003d - c a. Könnyen megérthető, hogy a - - c a - szám az x 2 = - c a egyenlet gyöke is: valóban, - - c a 2 = - c a .

Az egyenletnek nem lesz más gyökere. Ezt az ellenkező módszerrel demonstrálhatjuk. Először állítsuk be a fent talált gyökök jelölését, mint x 1És − x 1. Tegyük fel, hogy az x 2 = - c a egyenletnek is van gyöke x2, ami eltér a gyökerektől x 1És − x 1. Ezt úgy tudjuk, hogy behelyettesítjük az egyenletbe ahelyett x gyökereiből az egyenletet tisztességes numerikus egyenlőséggé alakítjuk.

Mert x 1És − x 1írd: x 1 2 = - c a , és for x2- x 2 2 \u003d - c a. A numerikus egyenlőségek tulajdonságai alapján tagonként kivonunk egy valódi egyenlőséget a másikból, ami a következőt kapja: x 1 2 − x 2 2 = 0. Használja a számműveletek tulajdonságait az utolsó egyenlőség átírásához (x 1 - x 2) (x 1 + x 2) = 0. Ismeretes, hogy két szám szorzata akkor és csak akkor nulla, ha legalább az egyik szám nulla. Az elmondottakból az következik x1 − x2 = 0és/vagy x1 + x2 = 0, ami ugyanaz x2 = x1és/vagy x 2 = − x 1. Nyilvánvaló ellentmondás merült fel, mert eleinte abban állapodtak meg, hogy az egyenlet gyökere x2 eltér x 1És − x 1. Tehát bebizonyítottuk, hogy az egyenletnek nincs más gyökere, mint x = - c a és x = - - c a .

Összefoglaljuk az összes fenti érvet.

6. definíció

Hiányos másodfokú egyenlet a x 2 + c = 0 ekvivalens az x 2 = - c a egyenlettel, amely:

  • nem lesz gyökere a - c a< 0 ;
  • két gyöke lesz x = - c a és x = - - c a , ha - c a > 0 .

Mondjunk példákat az egyenletek megoldására a x 2 + c = 0.

3. példa

Adott egy másodfokú egyenlet 9 x 2 + 7 = 0 . Meg kell találni a megoldását.

Megoldás

A szabad tagot átvisszük az egyenlet jobb oldalára, ekkor az egyenlet alakot ölt 9 x 2 \u003d - 7.
A kapott egyenlet mindkét oldalát elosztjuk 9 , akkor x 2 = - 7 9 . A jobb oldalon egy mínuszjelű számot látunk, ami azt jelenti: az adott egyenletnek nincs gyöke. Ezután az eredeti hiányos másodfokú egyenlet 9 x 2 + 7 = 0 nem lesznek gyökerei.

Válasz: az egyenlet 9 x 2 + 7 = 0 nincsenek gyökerei.

4. példa

Meg kell oldani az egyenletet − x2 + 36 = 0.

Megoldás

Tegyük át a 36-ot a jobb oldalra: − x 2 = − 36.
Osszuk fel mindkét részt − 1 , kapunk x2 = 36. A jobb oldalon egy pozitív szám található, amiből arra következtethetünk x = 36 vagy x = - 36 .
Kivonjuk a gyökeret, és felírjuk a végeredményt: egy hiányos másodfokú egyenlet − x2 + 36 = 0 két gyökere van x=6 vagy x = -6.

Válasz: x=6 vagy x = -6.

Az a x 2 +b x=0 egyenlet megoldása

Elemezzük a harmadik típusú nem teljes másodfokú egyenletet, amikor c = 0. Megoldást találni egy nem teljes másodfokú egyenletre a x 2 + b x = 0, a faktorizációs módszert használjuk. Tényezőzzük az egyenlet bal oldalán lévő polinomot, a közös tényezőt a zárójelekből kivéve x. Ez a lépés lehetővé teszi az eredeti, hiányos másodfokú egyenlet megfelelőjére történő átalakítását x (a x + b) = 0. Ez az egyenlet pedig ekvivalens az egyenletkészlettel x=0És a x + b = 0. Az egyenlet a x + b = 0 lineáris, és annak gyökere: x = − b a.

7. definíció

Így a nem teljes másodfokú egyenlet a x 2 + b x = 0 két gyökere lesz x=0És x = − b a.

Rögzítsük az anyagot egy példával.

5. példa

Meg kell találni a 2 3 · x 2 - 2 2 7 · x = 0 egyenlet megoldását.

Megoldás

Vegyük ki x a zárójelen kívülre, és megkapjuk az x · 2 3 · x - 2 2 7 = 0 egyenletet. Ez az egyenlet ekvivalens az egyenletekkel x=0és 2 3 x - 2 2 7 = 0 . Most meg kell oldania a kapott lineáris egyenletet: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

Az egyenlet megoldását röviden a következőképpen írjuk fel:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 vagy 2 3 x - 2 2 7 = 0

x = 0 vagy x = 3 3 7

Válasz: x = 0, x = 3 3 7.

Diszkrimináns, másodfokú egyenlet gyökeinek képlete

A másodfokú egyenletek megoldásához van egy gyökképlet:

8. definíció

x = - b ± D 2 a, ahol D = b 2 − 4 a c a másodfokú egyenlet úgynevezett diszkriminánsa.

Az x \u003d - b ± D 2 a beírása lényegében azt jelenti, hogy x 1 \u003d - b + D 2 a, x 2 \u003d - b - D 2 a.

Hasznos lesz megérteni, hogyan származtatták a jelzett képletet és hogyan kell alkalmazni.

Másodfokú egyenlet gyökképletének levezetése

Tegyük fel, hogy egy másodfokú egyenlet megoldásával állunk szemben a x 2 + b x + c = 0. Végezzünk el számos ekvivalens transzformációt:

  • ossza el az egyenlet mindkét oldalát a számmal a, nullától eltérően megkapjuk a redukált másodfokú egyenletet: x 2 + b a x + c a \u003d 0;
  • válassza ki a teljes négyzetet a kapott egyenlet bal oldalán:
    x 2 + b a x + c a = x 2 + 2 b 2 a x + b 2 a 2 - b 2 a 2 + c a = = x + b 2 a 2 - b 2 a 2 + c a
    Ezt követően az egyenlet a következőképpen alakul: x + b 2 a 2 - b 2 a 2 + c a \u003d 0;
  • most az utolsó két tagot át lehet vinni a jobb oldalra, az előjelet az ellenkezőjére változtatva, ami után kapjuk: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • végül átalakítjuk az utolsó egyenlőség jobb oldalára írt kifejezést:
    b 2 a 2 - c a \u003d b 2 4 a 2 - c a \u003d b 2 4 a 2 - 4 a c 4 a 2 \u003d b 2 - 4 a c 4 a 2.

Így elérkeztünk az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlethez, amely ekvivalens az eredeti egyenlettel a x 2 + b x + c = 0.

Az előző bekezdésekben az ilyen egyenletek megoldását tárgyaltuk (a nem teljes másodfokú egyenletek megoldása). A már megszerzett tapasztalatok lehetővé teszik az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlet gyökereire vonatkozó következtetés levonását:

  • b 2 - 4 a c 4 a 2 esetén< 0 уравнение не имеет действительных решений;
  • b 2 - 4 · a · c 4 · a 2 = 0 esetén az egyenlet alakja x + b 2 · a 2 = 0, akkor x + b 2 · a = 0.

Innen az egyetlen gyök x = - b 2 · a nyilvánvaló;

  • b 2 - 4 a c 4 a 2 > 0 esetén a következő igaz: x + b 2 a = b 2 - 4 a c 4 a 2 vagy x = b 2 a - b 2 - 4 a c 4 a 2, ami megegyezik az x + - b 2 a = b 2 - 4 a c 4 a 2 vagy x - b 2 a 2 , 4 a c 4 a 2 - 4 a c 4 a 2 - 4 a c 4 a 2 értékkel. az egyenletnek két gyöke van.

Arra a következtetésre juthatunk, hogy az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlet (és innen az eredeti egyenlet) gyökeinek megléte vagy hiánya a jobb oldalra írt b 2 - 4 a c 4 a 2 kifejezés előjelétől függ. És ennek a kifejezésnek a jelét a számláló jele adja (a nevező 4 és 2 mindig pozitív lesz), vagyis a kifejezés jele b 2 − 4 a c. Ez a kifejezés b 2 − 4 a c név van megadva - a másodfokú egyenlet diszkriminánsa és a D betű a jelölése. Itt leírhatja a diszkrimináns lényegét - értékéből és előjeléből arra következtetnek, hogy a másodfokú egyenletnek lesz-e valódi gyöke, és ha igen, hány gyöke - egy vagy kettő.

Térjünk vissza az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlethez. Írjuk át a diszkriminancia jelöléssel: x + b 2 · a 2 = D 4 · a 2 .

Foglaljuk össze a következtetéseket:

9. definíció

  • nál nél D< 0 az egyenletnek nincs valódi gyökere;
  • nál nél D=0 az egyenletnek egyetlen gyöke van x = - b 2 · a ;
  • nál nél D > 0 az egyenletnek két gyöke van: x \u003d - b 2 a + D 4 a 2 vagy x \u003d - b 2 a - D 4 a 2. A gyökök tulajdonságai alapján ezek a gyökök a következőképpen írhatók fel: x \u003d - b 2 a + D 2 a vagy - b 2 a - D 2 a. És amikor megnyitjuk a modulokat, és a törteket közös nevezőre csökkentjük, a következőket kapjuk: x \u003d - b + D 2 a, x \u003d - b - D 2 a.

Tehát okoskodásunk eredménye a másodfokú egyenlet gyökeinek képletének levezetése volt:

x = - b + D 2 a, x = - b - D 2 a, diszkrimináns D képlettel számítjuk ki D = b 2 − 4 a c.

Ezek a formulák lehetővé teszik mindkét valós gyök meghatározását, ha a diszkrimináns nagyobb, mint nulla. Ha a diszkrimináns nulla, mindkét képlet alkalmazása ugyanazt a gyökét adja a másodfokú egyenlet egyetlen megoldásaként. Abban az esetben, ha a diszkrimináns negatív, a másodfokú gyökképletet próbálva szembesülni kell azzal, hogy egy negatív szám négyzetgyökét kell kivonni, ami túlmutat a valós számokon. Nál nél negatív diszkrimináns a másodfokú egyenletnek nem lesz valós gyöke, de lehetséges egy összetett konjugált gyökpár, amelyet ugyanazok a gyökképletek határoznak meg, mint amit mi kaptunk.

Másodfokú egyenletek megoldásának algoritmusa gyökképletekkel

A másodfokú egyenletet a gyökképlet azonnali felhasználásával is meg lehet oldani, de ez alapvetően akkor történik meg, ha összetett gyököket kell találni.

Az esetek nagy részében a keresés általában nem összetett, hanem másodfokú egyenlet valós gyökereire vonatkozik. Ekkor optimális, mielőtt a másodfokú egyenlet gyökére vonatkozó képleteket használnánk, először meghatározzuk a diszkriminánst, és megbizonyosodunk arról, hogy az nem negatív (ellenkező esetben arra a következtetésre jutunk, hogy az egyenletnek nincs valódi gyöke), majd folytatjuk a gyökök értékének kiszámítását.

A fenti érvelés lehetővé teszi egy másodfokú egyenlet megoldására szolgáló algoritmus megfogalmazását.

10. definíció

Másodfokú egyenlet megoldására a x 2 + b x + c = 0, szükséges:

  • képlet szerint D = b 2 − 4 a c keresse meg a diszkrimináns értékét;
  • D-nél< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • ha D = 0, keressük meg az egyenlet egyetlen gyökét az x = - b 2 · a képlettel;
  • ha D > 0, határozzuk meg a másodfokú egyenlet két valós gyökét az x = - b ± D 2 · a képlettel.

Vegye figyelembe, hogy ha a diszkrimináns nulla, használhatja az x = - b ± D 2 · a képletet, amely ugyanazt az eredményt adja, mint az x = - b 2 · a képlet.

Vegye figyelembe a példákat.

Példák másodfokú egyenletek megoldására

Adjunk példát a megoldásra különböző értékeket diszkriminatív.

6. példa

Meg kell találni az egyenlet gyökereit x 2 + 2 x - 6 = 0.

Megoldás

Felírjuk a másodfokú egyenlet numerikus együtthatóit: a \u003d 1, b \u003d 2 és c = – 6. Ezután az algoritmus szerint járunk el, azaz. Kezdjük el kiszámolni a diszkriminánst, amelyre behelyettesítjük az a , b együtthatókat És c a diszkrimináns képletbe: D = b 2 − 4 a c = 2 2 − 4 1 (− 6) = 4 + 24 = 28 .

Így azt kaptuk, hogy D > 0, ami azt jelenti, hogy az eredeti egyenletnek két valós gyöke lesz.
Megtalálásukhoz az x \u003d - b ± D 2 · a gyökképletet használjuk, és a megfelelő értékeket helyettesítve a következőt kapjuk: x \u003d - 2 ± 28 2 · 1. A kapott kifejezést egyszerűsítjük úgy, hogy a faktort kivesszük a gyök előjeléből, majd a tört redukálásával:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 vagy x = - 2 - 2 7 2

x = - 1 + 7 vagy x = - 1 - 7

Válasz: x = - 1 + 7 , x = - 1 - 7 .

7. példa

Másodfokú egyenletet kell megoldani − 4 x 2 + 28 x − 49 = 0.

Megoldás

Határozzuk meg a diszkriminánst: D = 28 2 - 4 (- 4) (- 49) = 784 - 784 = 0. Ezzel a diszkrimináns értékkel az eredeti egyenletnek csak egy gyöke lesz, amelyet az x = - b 2 · a képlet határoz meg.

x = - 28 2 (- 4) x = 3, 5

Válasz: x = 3, 5.

8. példa

Meg kell oldani az egyenletet 5 év 2 + 6 év + 2 = 0

Megoldás

Ennek az egyenletnek a numerikus együtthatói a következők lesznek: a = 5 , b = 6 és c = 2 . A diszkrimináns meghatározásához ezeket az értékeket használjuk: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . A kiszámított diszkrimináns negatív, így az eredeti másodfokú egyenletnek nincs valódi gyökere.

Abban az esetben, ha a feladat összetett gyökök megjelölése, akkor a gyökképletet alkalmazzuk komplex számokkal végzett műveletek végrehajtásával:

x \u003d - 6 ± - 4 2 5,

x \u003d - 6 + 2 i 10 vagy x \u003d - 6 - 2 i 10,

x = - 3 5 + 1 5 i vagy x = - 3 5 - 1 5 i .

Válasz: nincsenek igazi gyökerek; az összetett gyökök: - 3 5 + 1 5 i , - 3 5 - 1 5 i .

Az iskolai tantervben standardként nem írják elő az összetett gyökerek keresését, ezért ha a döntés során a diszkriminánst nemlegesnek definiálják, azonnal rögzítésre kerül a válasz, hogy nincsenek valódi gyökerek.

Gyökérképlet akár második együtthatóhoz

Az x \u003d - b ± D 2 a (D \u003d b 2 - 4 a c) gyökképlet lehetővé teszi egy másik, kompaktabb képlet megszerzését, amely lehetővé teszi, hogy megoldásokat találjon másodfokú egyenletekre, amelyeknek páros együtthatója van x-ben (vagy 2 n formájú együtthatóval, például 2 3 vagy 14 n2 n7). Mutassuk meg, hogyan keletkezik ez a képlet.

Tegyük fel, hogy azzal a feladattal állunk szemben, hogy megoldást találjunk az a · x 2 + 2 · n · x + c = 0 másodfokú egyenletre. Az algoritmus szerint járunk el: meghatározzuk a D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c) diszkriminánst, majd a gyökképletet használjuk:

x \u003d - 2 n ± D 2 a, x \u003d - 2 n ± 4 n 2 - a c 2 a, x \u003d - 2 n ± 2 n 2 - a c 2 a, x \u003d - n ± n 2 - a c a.

Jelöljük az n 2 − a c kifejezést D 1-nek (néha D "-nek jelölik). Ekkor a vizsgált másodfokú egyenlet gyökeinek képlete a második 2 n együtthatóval a következőképpen alakul:

x \u003d - n ± D 1 a, ahol D 1 \u003d n 2 - a c.

Könnyen belátható, hogy D = 4 · D 1 vagy D 1 = D 4 . Más szóval, D 1 a diszkrimináns negyede. Nyilvánvaló, hogy D 1 előjele megegyezik D előjelével, ami azt jelenti, hogy D 1 előjele egy másodfokú egyenlet gyökeinek meglétére vagy hiányára is szolgálhat.

11. definíció

Így egy 2 n-es második együtthatójú másodfokú egyenlet megoldásához szükséges:

  • keresse meg D 1 = n 2 − a c ;
  • a D 1-ben< 0 сделать вывод, что действительных корней нет;
  • D 1 = 0 esetén határozza meg az egyenlet egyetlen gyökét az x = - n a képlettel;
  • D 1 > 0 esetén határozzunk meg két valós gyöket az x = - n ± D 1 képlettel a.

9. példa

Meg kell oldani az 5 · x 2 − 6 · x − 32 = 0 másodfokú egyenletet.

Megoldás

Az adott egyenlet második együtthatója 2 · (− 3) . Ezután átírjuk a megadott másodfokú egyenletet a következőre: 5 · x 2 + 2 · (− 3) · x − 32 = 0, ahol a = 5, n = − 3 és c = − 32.

Számítsuk ki a diszkrimináns negyedik részét: D 1 = n 2 − a c = (− 3) 2 − 5 (− 32) = 9 + 160 = 169 . A kapott érték pozitív, ami azt jelenti, hogy az egyenletnek két valós gyöke van. Meghatározzuk őket a gyökök megfelelő képletével:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 vagy x = 3 - 13 5

x = 3 1 5 vagy x = - 2

Lehetséges lenne a másodfokú egyenlet gyökeinek szokásos képletével is számításokat végezni, de ebben az esetben a megoldás körülményesebb lenne.

Válasz: x = 3 1 5 vagy x = - 2 .

Másodfokú egyenletek formájának egyszerűsítése

Néha lehetséges az eredeti egyenlet alakjának optimalizálása, ami leegyszerűsíti a gyökerek kiszámításának folyamatát.

Például a 12 x 2 - 4 x - 7 \u003d 0 másodfokú egyenlet egyértelműen kényelmesebb megoldáshoz, mint az 1200 x 2 - 400 x - 700 \u003d 0.

Gyakrabban a másodfokú egyenlet alakjának egyszerűsítését úgy hajtják végre, hogy mindkét részét megszorozzák vagy osztják egy bizonyos számmal. Például fentebb bemutattuk az 1200 x 2 - 400 x - 700 = 0 egyenlet egyszerűsített ábrázolását, amelyet úgy kaptunk, hogy mindkét részét elosztjuk 100-zal.

Egy ilyen transzformáció akkor lehetséges, ha a másodfokú egyenlet együtthatói nem relatíve prímszámok. Ekkor gyakori, hogy az egyenlet mindkét oldalát elosztjuk a legnagyobbal közös osztó együtthatóinak abszolút értékei.

Példaként használjuk a 12 x 2 − 42 x + 48 = 0 másodfokú egyenletet. Határozzuk meg együtthatóinak abszolút értékeinek gcd-jét: gcd (12 , 42 , 48) = gcd(gcd (12 , 42) , 48) = gcd (6 , 48) = 6 . Osszuk el az eredeti másodfokú egyenlet mindkét részét 6-tal, és kapjuk a 2 · x 2 − 7 · x + 8 = 0 ekvivalens másodfokú egyenletet.

A másodfokú egyenlet mindkét oldalát megszorozva a törtegyütthatókat általában kiküszöböljük. Ebben az esetben szorozzuk meg együtthatói nevezőinek legkisebb közös többszörösével. Például, ha az 1 6 x 2 + 2 3 x - 3 \u003d 0 másodfokú egyenlet minden részét megszorozzuk LCM-mel (6, 3, 1) \u003d 6, akkor egyszerűbb formában lesz megírva: x 2 + 4 x - 18 \u003d.

Végül megjegyezzük, hogy szinte mindig megszabadulni a mínusztól a másodfokú egyenlet első együtthatójánál, megváltoztatva az egyenlet minden tagjának előjelét, amit úgy érünk el, hogy mindkét részt megszorozzuk (vagy osztjuk) −1-gyel. Például a - 2 x 2 - 3 x + 7 \u003d 0 másodfokú egyenletből áttérhet az egyszerűsített változatra 2 x 2 + 3 x - 7 \u003d 0.

A gyökök és az együtthatók kapcsolata

Az x = - b ± D 2 · a másodfokú egyenletek gyökeinek már ismert képlete numerikus együtthatóival fejezi ki az egyenlet gyökereit. Alapul véve ezt a képletet, lehetőségünk van más függőségek megadására a gyökök és az együtthatók között.

A leghíresebb és leginkább alkalmazható a Vieta-tétel képlete:

x 1 + x 2 \u003d - b a és x 2 \u003d c a.

Konkrétan, az adott másodfokú egyenletnél a gyökök összege a második ellentétes előjelű együttható, a gyökök szorzata pedig egyenlő a szabad taggal. Például a 3 · x 2 − 7 · x + 22 \u003d 0 másodfokú egyenlet alapján azonnal meghatározható, hogy gyökeinek összege 7 3, a gyökök szorzata pedig 22 3.

Számos más összefüggés is megtalálható a másodfokú egyenlet gyökei és együtthatói között. Például egy másodfokú egyenlet gyökeinek négyzetösszege kifejezhető együtthatókkal:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Ha hibát észlel a szövegben, jelölje ki, és nyomja meg a Ctrl+Enter billentyűkombinációt