Képletek a legegyszerűbb trigonometrikus egyenletek gyökereinek megtalálásához. Homogén trigonometrikus egyenletek. Trigonometrikus egyenletek megoldási módszerei

A legegyszerűbb megoldás trigonometrikus egyenletek.

Bármilyen bonyolultságú trigonometrikus egyenletek megoldása végső soron a legegyszerűbb trigonometrikus egyenletek megoldásához vezet. És ebben ismét a trigonometrikus kör bizonyul a legjobb segítőnek.

Emlékezzünk vissza a koszinusz és a szinusz definíciójára.

A szög koszinusza az egységkör egy adott szöggel történő elforgatásának megfelelő pontjának abszcisszája (vagyis a tengely menti koordinátája).

A szög szinusza az egységkör egy pontjának ordinátája (vagyis a tengely menti koordinátája), amely egy adott szöggel való elforgatásnak felel meg.

A mozgás pozitív iránya trigonometrikus kör az óramutató járásával ellentétes mozgást veszik figyelembe. A 0 fokos (vagy 0 radiános) elforgatás egy (1; 0) koordinátájú pontnak felel meg.

Ezeket a definíciókat használjuk a legegyszerűbb trigonometrikus egyenletek megoldására.

1. Oldja meg az egyenletet!

Ezt az egyenletet kielégíti a forgásszög minden olyan értéke, amely megfelel a kör pontjainak, amelynek ordinátája egyenlő.

Jelöljünk egy pontot ordinátával az y tengelyen:


Rajzoljon egy vízszintes vonalat párhuzamosan az x tengellyel, amíg az nem metszi a kört. Két pontot kapunk egy körön fekve és ordinátával. Ezek a pontok a és a radián elforgatási szögeinek felelnek meg:


Ha a radiánonkénti forgásszögnek megfelelő pontot elhagyva egy teljes kört megkerülünk, akkor a radiánonkénti forgásszögnek megfelelő és azonos ordinátájú ponthoz jutunk. Vagyis ez a forgásszög is kielégíti az egyenletünket. Tetszőleges számú "üresjárati" fordulatot tehetünk, visszatérve ugyanabba a pontba, és ezek a szögértékek kielégítik az egyenletünket. Az „üresjárati” fordulatok számát a (vagy) betű jelöli. Mivel ezeket a fordulatokat pozitív és negatív irányba is megtehetjük, (vagy ) bármilyen egész értéket felvehet.

Vagyis az eredeti egyenlet megoldásainak első sorozatának alakja:

, , - egész számok halmaza (1)

Hasonlóképpen, a megoldások második sorozatának formája a következő:

, Ahol , . (2)

Ahogy sejtette, ez a megoldássorozat a kör forgásszögének megfelelő pontján alapul.

Ez a két megoldássorozat egy bejegyzésben kombinálható:

Ha ezt a bejegyzést bevesszük (vagyis párost), akkor megkapjuk az első megoldási sorozatot.

Ha ezt a bejegyzést (azaz páratlant) vesszük, akkor a második megoldássort kapjuk.

2. Most oldjuk meg az egyenletet

Mivel a szög átfordításával kapott egységkör pontjának abszcisszája, jelölünk a tengelyen egy pontot az abszcisszával:


Rajzolj a tengellyel párhuzamos függőleges vonalat, amíg az nem metszi a kört. Két pontot kapunk egy körön fekve és egy abszcisszával. Ezek a pontok a és a radián elforgatási szögeinek felelnek meg. Emlékezzünk vissza, hogy az óramutató járásával megegyező irányba mozgatva negatív forgásszöget kapunk:


Két megoldássort írunk le:

,

,

(A fő teljes körből áthaladva jutunk el a megfelelő ponthoz, azaz.

Foglaljuk össze ezt a két sorozatot egy bejegyzésben:

3. Oldja meg az egyenletet!

Az érintők vonala átmegy az egységkör OY tengellyel párhuzamos koordinátáinak (1,0) pontján

Jelölj rajta egy pontot, amelynek ordinátája egyenlő 1-gyel (azt keressük, amelyik szögeinek érintője 1):


Kösse össze ezt a pontot az origóval egy egyenessel, és jelölje meg az egyenes metszéspontjait az egységkörrel. Az egyenes és a kör metszéspontjai megfelelnek a és a forgási szögeknek:


Mivel az egyenletünket kielégítő elforgatási szögeknek megfelelő pontok radiánnyira helyezkednek el egymástól, a megoldást a következőképpen írhatjuk fel:

4. Oldja meg az egyenletet!

A kotangensek vonala átmegy azon a ponton, ahol az egységkör koordinátái a tengellyel párhuzamosak.

A kotangensek vonalán egy pontot jelölünk az abszcisszával -1:


Csatlakoztassa ezt a pontot az egyenes origójához, és folytassa addig, amíg nem metszi a kört. Ez az egyenes metszi a kört azokban a pontokban, amelyek megfelelnek az elforgatási szögeknek és a radiánoknak:


Mivel ezeket a pontokat egymástól egyenlő távolság választja el, így ennek az egyenletnek az általános megoldását a következőképpen írhatjuk fel:

A megadott példákban a legegyszerűbb trigonometrikus egyenletek megoldását szemléltetve táblázatos értékeket használtunk trigonometrikus függvények.

Ha azonban az egyenlet jobb oldalán van egy nem táblázatos érték, akkor az egyenlet általános megoldásában az értéket helyettesítjük:





KÜLÖNLEGES MEGOLDÁSOK:

Jelölje meg a kör azon pontjait, amelyek ordinátája 0:


Jelölj egy pontot a körön, amelynek ordinátája egyenlő 1-gyel:


Jelölj egy pontot a körön, amelynek ordinátája egyenlő -1-gyel:


Mivel a nullához legközelebb eső értékeket szokás feltüntetni, a megoldást a következőképpen írjuk:

Jelölje be a pontokat a körön, amelynek abszcissza 0:


5.
Jelöljünk a körön egyetlen pontot, amelynek az abszcisszája egyenlő 1-gyel:


Jelölj egy pontot a körön, amelynek abszcisszán egyenlő -1:


És néhány bonyolultabb példa:

1.

A szinusz egy, ha az argumentum az

A szinuszunk argumentuma , így kapjuk:

Osszuk el az egyenlet mindkét oldalát 3-mal:

Válasz:

2.

A koszinusz nulla, ha a koszinusz argumentum az

A koszinuszunk argumentuma , így kapjuk:

Kifejezzük, ehhez először jobbra haladunk ellenkező előjellel:

Egyszerűsítse a jobb oldalt:

Mindkét részt el kell osztani -2-vel:

Figyeljük meg, hogy a tag előtti előjel nem változik, mivel k tetszőleges egész értéket vehet fel.

Válasz:

Végezetül nézze meg a "Gyökerek kiválasztása trigonometrikus egyenletben trigonometrikus kör segítségével" című videót.

Ezzel véget is ért a beszélgetés a legegyszerűbb trigonometrikus egyenletek megoldásáról. Legközelebb a megoldásról beszélünk.

A trigonometrikus egyenletek nem a legkönnyebb téma. Fájdalmasan sokfélék.) Például ezek:

sin2x + cos3x = ctg5x

sin(5x+π /4) = ctg(2x-π /3)

sinx + cos2x + tg3x = ctg4x

Stb...

De ezeknek (és az összes többi) trigonometrikus szörnynek van két közös és kötelező jellemzője. Először is - el sem hiszed - trigonometrikus függvények vannak az egyenletekben.) Másodszor: minden x-et tartalmazó kifejezés ugyanezen funkciókon belül.És csak ott! Ha x megjelenik valahol kívül, Például, sin2x + 3x = 3, ez egy vegyes típusú egyenlet lesz. Az ilyen egyenletek egyéni megközelítést igényelnek. Itt nem vesszük figyelembe őket.

Ebben a leckében sem fogunk gonosz egyenleteket megoldani.) Itt azzal fogunk foglalkozni a legegyszerűbb trigonometrikus egyenletek. Miért? Igen, mert a döntés Bármi A trigonometrikus egyenletek két szakaszból állnak. Az első szakaszban a gonosz egyenletet különféle transzformációk segítségével egyszerűvé redukálják. A másodiknál ​​ez a legegyszerűbb egyenlet megoldódik. Nincs más mód.

Tehát, ha problémái vannak a második szakaszban, az első szakasznak nincs sok értelme.)

Hogyan néznek ki az elemi trigonometrikus egyenletek?

sinx = a

cosx = a

tgx = a

ctgx = a

Itt A bármely számot jelöl. Bármi.

Egyébként a függvényen belül nem tiszta x lehet, hanem valamilyen kifejezés, mint pl.

cos(3x+π /3) = 1/2

stb. Ez bonyolítja az életet, de nem befolyásolja a trigonometrikus egyenlet megoldásának módszerét.

Hogyan lehet trigonometrikus egyenleteket megoldani?

A trigonometrikus egyenletek kétféleképpen oldhatók meg. Az első módszer: logika és trigonometrikus kör használata. Ezt az utat fogjuk itt felfedezni. A második módszert - memória és képletek használatával - a következő leckében tárgyaljuk.

Az első út világos, megbízható és nehezen felejthető.) Jó trigonometrikus egyenletek, egyenlőtlenségek és mindenféle trükkös nem szabványos példa megoldására. A logika erősebb, mint a memória!

Egyenleteket oldunk meg trigonometrikus kör segítségével.

Beleértjük az elemi logikát és a trigonometrikus kör használatának képességét. Nem tudsz!? Azonban... Nehéz lesz neked a trigonometriában...) De mindegy. Vessen egy pillantást a "Trigonometrikus kör ...... Mi ez?" és "Szögek számolása trigonometrikus körön". Ott minden egyszerű. A tankönyvekkel ellentétben...)

Ah, tudod!? És még elsajátította a "Gyakorlati munkát trigonometrikus körrel"!? Fogadd a gratulációkat. Ez a téma közel áll és érthető lesz számodra.) Ami különösen kellemes, hogy a trigonometrikus körnek nem mindegy, hogy melyik egyenletet oldod meg. Szinusz, koszinusz, érintő, kotangens – nála minden ugyanaz. A megoldás elve ugyanaz.

Tehát bármilyen elemi trigonometrikus egyenletet felveszünk. Legalább ezt:

cosx = 0,5

Meg kell találnom X-et. Ha beszélni emberi nyelv, kell keressük meg azt a szöget (x), amelynek koszinusza 0,5.

Hogyan használtuk korábban a kört? Sarkot húztunk rá. Fokban vagy radiánban. És azonnal látott ennek a szögnek a trigonometrikus függvényei. Most tegyük az ellenkezőjét. Rajzolj a körre egy 0,5-tel egyenlő koszinust és azonnal meglátjuk sarok. Már csak a választ le kell írni.) Igen, igen!

Rajzolunk egy kört, és jelöljük meg a koszinusz 0,5-tel. Természetesen a koszinusz tengelyen. Mint ez:

Most rajzoljuk meg azt a szöget, amelyet ez a koszinusz ad nekünk. Vigye az egeret a kép fölé (vagy érintse meg a képet táblagépen), és lát ugyanez a sarok X.

Melyik szög koszinusza 0,5?

x \u003d π / 3

kötözősaláta 60°= cos( π /3) = 0,5

Vannak, akik szkeptikusan morognak, igen... Azt mondják, megérte bekeríteni a kört, amikor úgyis minden világos... Lehet persze morogni...) De tény, hogy ez hibás válasz. Vagy inkább elégtelen. A kör ínyencei megértik, hogy még mindig van egy csomó szög, amely egy 0,5-ös koszinust is ad.

Ha elfordítja a mozgatható oldalt OA egy teljes fordulatra, az A pont visszatér eredeti helyzetébe. Ugyanaz a koszinusz 0,5. Azok. a szög megváltozik 360° vagy 2π radián, és koszinusz nem. Az új 60° + 360° = 420° szög egyenletünk megoldása is lesz, mert

Végtelen sok ilyen teljes elforgatás van... És mindezek az új szögek a trigonometrikus egyenletünk megoldásai lesznek. És mindegyiket le kell írni valahogy. Minden. Ellenkező esetben a döntést nem veszik figyelembe, igen...)

A matematika ezt egyszerűen és elegánsan meg tudja csinálni. Egy rövid válaszban írja le végtelen halmaz megoldásokat. Így néz ki az egyenletünkhöz:

x = π /3 + 2π n, n ∈ Z

megfejtem. Még írj értelmesen szebb, mint hülyén rejtélyes betűket rajzolni, igaz?)

π /3 ugyanaz a szög, mint mi fűrész a körön és eltökélt a koszinusztáblázat szerint.

egy teljes fordulat radiánban.

n - ennyi a teljes, i.e. egész forradalmak. Egyértelmű, hogy n lehet 0, ±1, ±2, ±3.... és így tovább. Amint azt a rövid bejegyzés is jelzi:

n ∈ Z

n tartozik ( ) egész számok halmazához ( Z ). Egyébként a levél helyett n betűk használhatók k, m, t stb.

Ez a jelölés azt jelenti, hogy bármilyen egész számot vehet n . Legalább -3, legalább 0, legalább +55. Mit akarsz. Ha beilleszti ezt a számot a válaszába, akkor egy meghatározott szöget kap, ami biztosan megoldása lesz a kemény egyenletünkre.)

Vagy más szóval, x \u003d π / 3 a végtelen halmaz egyetlen gyöke. Az összes többi gyökér megszerzéséhez elegendő tetszőleges számú teljes fordulatot hozzáadni π / 3-hoz ( n ) radiánban. Azok. 2πn radián.

Minden? Nem. Kifejezetten nyújtom az örömöt. Hogy jobban emlékezzünk.) Az egyenletünkre adott válaszoknak csak egy részét kaptuk meg. A megoldás első részét a következőképpen írom le:

x 1 = π /3 + 2π n, n ∈ Z

x 1 - nem egy gyökér, ez egy egész sor gyökér, rövid formában írva.

De vannak más szögek is, amelyek 0,5-tel egyenlő koszinuszot adnak!

Térjünk vissza képünkhöz, mely szerint felírtuk a választ. Itt is van:

Vigye az egeret a kép fölé, és lát egy másik sarok az 0,5 koszinuszát is ad. Szerinted mivel egyenlő? A háromszögek ugyanazok... Igen! Ő egyenlő a szöggel x , csak negatív irányba ábrázolva. Ez itt a sarok -X. De már kiszámoltuk x-et. π /3 vagy 60°. Ezért nyugodtan írhatjuk:

x 2 \u003d - π / 3

És természetesen hozzáadjuk a teljes fordulatokkal elért összes szöget:

x 2 = - π /3 + 2π n, n ∈ Z

Most ennyi.) Egy trigonometrikus körben mi fűrész(aki érti, persze)) Minden szögek, amelyek 0,5-tel egyenlő koszinuszot adnak. És felírták ezeket a szögeket egy rövid matematikai formában. A válasz a gyökér két végtelen sorozata:

x 1 = π /3 + 2π n, n ∈ Z

x 2 = - π /3 + 2π n, n ∈ Z

Ez a helyes válasz.

Remény, trigonometrikus egyenletek megoldásának általános elve kör segítségével érthető. Jelöljük a körön a koszinuszát (szinusz, érintő, kotangens). adott egyenlet, rajzold meg a hozzá tartozó sarkokat és írd le a választ. Persze ki kell találni, hogy milyen sarkok vagyunk fűrész a körön. Néha ez nem olyan nyilvánvaló. Nos, ahogy mondtam, itt logika kell.)

Például elemezzünk egy másik trigonometrikus egyenletet:

Kérjük, vegye figyelembe, hogy nem a 0,5 az egyetlen lehetséges szám az egyenletekben!) Egyszerűen kényelmesebb ezt leírnom, mint a gyököket és a törteket.

Az általános elv szerint dolgozunk. Rajzolunk egy kört, jelöljük meg (természetesen a szinuszos tengelyen!) 0,5. Egyszerre berajzoljuk az ennek a szinusznak megfelelő összes szöget. Ezt a képet kapjuk:

Először foglalkozzunk a szöggel. x az első negyedévben. Felidézzük a szinusztáblázatot, és meghatározzuk ennek a szögnek az értékét. A dolog egyszerű:

x \u003d π / 6

Felidézzük a teljes fordulatot, és tiszta lelkiismerettel írjuk le a válaszok első sorozatát:

x 1 = π /6 + 2π n, n ∈ Z

A munka fele kész. Most meg kell határoznunk második sarok... Ez trükkösebb, mint a koszinuszokban, igen... De a logika megment minket! Hogyan határozzuk meg a második szöget x-en keresztül? Igen Könnyű! A képen látható háromszögek ugyanazok, és a piros sarok x egyenlő a szöggel x . Csak azt számoljuk a π szögből negatív irányba. Ezért piros.) A válaszhoz pedig a pozitív féltengely OX-tól helyesen mért szögre van szükség, azaz. 0 fokos szögből.

Vigye a kurzort a kép fölé, és mindent láthat. Az első sarkot eltávolítottam, hogy ne bonyolítsam a képet. A számunkra érdekes szög (zöld színnel rajzolva) egyenlő lesz:

π - x

x tudjuk π /6 . Tehát a második szög a következő lesz:

π - π /6 = 5π /6

Ismét felidézzük a teljes fordulatok hozzáadását, és leírjuk a válaszok második sorozatát:

x 2 = 5π /6 + 2π n, n ∈ Z

Ez minden. A teljes válasz két gyökérsorozatból áll:

x 1 = π /6 + 2π n, n ∈ Z

x 2 = 5π /6 + 2π n, n ∈ Z

Az érintővel és kotangenssel rendelkező egyenletek könnyen megoldhatók a trigonometrikus egyenletek megoldásának ugyanazon általános elvével. Kivéve persze, ha tudja, hogyan kell megrajzolni az érintőt és a kotangenst egy trigonometrikus körön.

A fenti példákban a szinusz és a koszinusz táblázatos értékét használtam: 0,5. Azok. azon jelentések egyike, amelyeket a tanuló ismer kell. Most bővítsük ki képességeinket minden más érték. Dönts, hát dönts!)

Tehát tegyük fel, hogy meg kell oldanunk a következő trigonometrikus egyenletet:

Ez a koszinusz érték összefoglaló táblázatok Nem. Hűvösen figyelmen kívül hagyjuk ezt a szörnyű tényt. Rajzolunk egy kört, a koszinusz tengelyen 2/3-ot jelölünk, és berajzoljuk a megfelelő szögeket. Ezt a képet kapjuk.

Kezdetnek megértjük az első negyed szögével. Hogy megtudják, mi x egyenlő, azonnal felírnák a választ! Nem tudjuk... Kudarc!? Nyugodt! A matematika nem hagyja bajban a magáét! Erre az esetre ő találta ki az ív koszinuszokat. Nem tudom? Hiába. Sokkal könnyebb, mint gondolnád. A link szerint egyetlen trükkös varázslat sincs az "inverz trigonometrikus függvényekről"... Ebben a témában ez felesleges.

Ha tisztában vagy vele, csak mondd magadnak: "X olyan szög, amelynek koszinusza 2/3." És azonnal, pusztán az arccosine definíciója alapján írhatjuk:

Emlékezzünk a további fordulatokra, és nyugodtan írjuk le trigonometrikus egyenletünk gyökeinek első sorozatát:

x 1 = arccos 2/3 + 2π n, n ∈ Z

A gyökök második sorozata is szinte automatikusan íródik, a második szöghez. Minden ugyanaz, csak x (arccos 2/3) lesz mínuszos:

x 2 = - arccos 2/3 + 2π n, n ∈ Z

És minden! Ez a helyes válasz. Még egyszerűbb, mint táblázatos értékekkel. Nem kell semmire sem emlékezni.) Egyébként a legfigyelmesebbek észreveszik, hogy ez a kép a megoldással az ív koszinuszon keresztül lényegében nem különbözik a cosx = 0,5 egyenlet képétől.

Pontosan! Az általános elv erre és az általános! Konkrétan két majdnem egyforma képet rajzoltam. A kör a szöget mutatja x koszinuszával. Ez egy táblázatos koszinusz, vagy nem - a kör nem tudja. Hogy ez milyen szög, π / 3, vagy milyen ív koszinusz, azt mi döntjük el.

Egy szinuszos ugyanaz a dal. Például:

Ismét rajzolunk egy kört, jelöljük meg a szinust 1/3-dal, rajzoljuk meg a sarkokat. Kiderült ez a kép:

És megint csaknem ugyanaz a kép, mint az egyenletnél sinx = 0,5. Ismét a sarokból indulunk az első negyedben. Mi az x, ha a szinusza 1/3? Nincs mit!

Tehát az első csomag gyökér készen áll:

x 1 = arcsin 1/3 + 2π n, n ∈ Z

Vessünk egy pillantást a második szögre. A 0,5-ös táblázatértékkel rendelkező példában ez egyenlő volt:

π - x

Tehát itt is pontosan ugyanaz lesz! Csak x különbözik, arcsin 1/3. És akkor mi van!? Nyugodtan megírhatja a második gyökércsomagot:

x 2 = π - arcsin 1/3 + 2π n, n ∈ Z

Ez egy teljesen helyes válasz. Bár nem tűnik túl ismerősnek. De remélem érthető.)

Így oldják meg a trigonometrikus egyenleteket kör segítségével. Ez az út világos és érthető. Ő ment a trigonometrikus egyenletekben a gyökök kiválasztásával egy adott intervallumban, a trigonometrikus egyenlőtlenségekben - általában szinte mindig körben oldják meg. Röviden, minden olyan feladatban, amely egy kicsit bonyolultabb a szokásosnál.

A tudás gyakorlatba ültetése?

Oldja meg a trigonometrikus egyenleteket:

Eleinte egyszerűbb, közvetlenül ezen a leckén.

Most már nehezebb.

Tipp: itt a körre kell gondolni. Személyesen.)

És most külsőleg szerény ... Különleges eseteknek is nevezik őket.

sinx = 0

sinx = 1

cosx = 0

cosx = -1

Tipp: itt ki kell derítened egy körben, hogy hol van két válaszsorozat, és hol egy... És hogyan írj fel egyet a két válaszsorozat helyett. Igen, hogy végtelen számból egyetlen gyök se vesszen el!)

Hát, nagyon egyszerű):

sinx = 0,3

cosx = π

tgx = 1,2

ctgx = 3,7

Tipp: itt tudnod kell, mi az arcszinusz, arkoszinusz? Mi az arctangens, arctangens? A legegyszerűbb meghatározások. De nem kell emlékeznie táblázatos értékekre!)

A válaszok Természetesen zűrzavarosak:

x 1= arcsin0,3 + 2πn, n ∈ Z
x 2= π - arcsin0,3 + 2

Nem minden sikerül? Megtörténik. Olvasd el újra a leckét. Csak elgondolkodva(van ilyen elavult szó...) És kövesd a linkeket. A fő linkek a körről szólnak. Enélkül a trigonometriában - hogyan kell átkelni az úton bekötött szemmel. Néha működik.)

Ha tetszik ez az oldal...

Egyébként van még néhány érdekes oldalam az Ön számára.)

Gyakorolhatod a példák megoldását, és megtudhatod a szintedet. Tesztelés azonnali ellenőrzéssel. Tanulás – érdeklődéssel!)

függvényekkel, származékokkal ismerkedhet meg.

A "Get an A" videó tanfolyam minden olyan témát tartalmaz, amely a sikeres sikerhez szükséges a vizsga letétele matematikából 60-65 pontért. Teljesen minden feladat 1-13 profilvizsga matematika. Alkalmas a Basic USE matematika letételére is. Ha 90-100 ponttal akarsz sikeres vizsgát tenni, akkor az 1. részt 30 perc alatt és hiba nélkül kell megoldanod!

Vizsgára felkészítő tanfolyam 10-11. osztályosoknak, valamint pedagógusoknak. Minden, ami a matematika vizsga 1. részének (az első 12 feladat) és a 13. feladatnak (trigonometria) megoldásához szükséges. Ez pedig több mint 70 pont az Egységes Államvizsgán, és ezek nélkül sem százpontos, sem humanista nem tud meglenni.

Minden szükséges elmélet. Gyors módszerek a vizsga megoldásai, csapdái és titkai. A FIPI Bank feladatai közül az 1. rész összes releváns feladatát elemeztem. A tanfolyam teljes mértékben megfelel az USE-2018 követelményeinek.

A tanfolyam 5 nagy témát tartalmaz, egyenként 2,5 órás. Minden témát a semmiből adunk, egyszerűen és világosan.

Több száz vizsgafeladat. Szövegfeladatok és valószínűségszámítás. Egyszerű és könnyen megjegyezhető problémamegoldó algoritmusok. Geometria. Elmélet, referenciaanyag, minden típusú USE feladat elemzése. Sztereometria. Trükkös megoldások, hasznos csalólapok, fejlesztés térbeli képzelet. Trigonometria a semmiből - a 13. feladathoz. Megértés a zsúfoltság helyett. Összetett fogalmak vizuális magyarázata. Algebra. Gyökök, hatványok és logaritmusok, függvény és derivált. Alap a megoldáshoz kihívást jelentő feladatokat 2 vizsgarész.

Az Ön adatainak védelme fontos számunkra. Emiatt kidolgoztunk egy adatvédelmi szabályzatot, amely leírja, hogyan használjuk és tároljuk az Ön adatait. Kérjük, olvassa el adatvédelmi szabályzatunkat, és tudassa velünk, ha kérdése van.

Személyes adatok gyűjtése és felhasználása

A személyes adatok olyan adatokra vonatkoznak, amelyek felhasználhatók egy adott személy azonosítására vagy kapcsolatfelvételre.

Amikor kapcsolatba lép velünk, bármikor megkérhetjük személyes adatainak megadására.

Az alábbiakban bemutatunk néhány példát arra, hogy milyen típusú személyes adatokat gyűjthetünk, és hogyan használhatjuk fel ezeket az információkat.

Milyen személyes adatokat gyűjtünk:

  • Amikor jelentkezik az oldalon, különféle információkat gyűjthetünk, beleértve az Ön nevét, telefonszámát, címét Email stb.

Hogyan használjuk fel személyes adatait:

  • Mi gyűjtöttük össze Személyes adat lehetővé teszi, hogy kapcsolatba léphessünk Önnel, és tájékoztassuk Önt egyedi ajánlatokról, promóciókról és egyéb eseményekről és közelgő eseményekről.
  • Időről időre felhasználhatjuk személyes adatait fontos értesítések és üzenetek küldésére.
  • A személyes adatokat belső célokra is felhasználhatjuk, például auditok lefolytatására, adatelemzésre és különféle kutatásokra annak érdekében, hogy javítsuk szolgáltatásainkat, és javaslatokat adjunk Önnek szolgáltatásainkkal kapcsolatban.
  • Ha részt vesz egy nyereményjátékban, versenyben vagy hasonló ösztönzőben, felhasználhatjuk az Ön által megadott információkat az ilyen programok lebonyolítására.

Feltárás harmadik felek számára

Az Öntől kapott információkat nem adjuk ki harmadik félnek.

Kivételek:

  • Abban az esetben, ha ez szükséges – a törvénynek, a bírósági végzésnek, a bírósági eljárásoknak megfelelően és/vagy az Orosz Föderáció területén működő állami szervek nyilvános megkeresései vagy kérései alapján – adja ki személyes adatait. Felfedhetünk Önnel kapcsolatos információkat is, ha úgy ítéljük meg, hogy az ilyen közzététel biztonsági, bűnüldözési vagy egyéb közérdekű célból szükséges vagy megfelelő.
  • Átszervezés, egyesülés vagy eladás esetén az általunk gyűjtött személyes adatokat átadhatjuk az érintett harmadik fél jogutódjának.

Személyes adatok védelme

Óvintézkedéseket teszünk – beleértve az adminisztratív, technikai és fizikai intézkedéseket is –, hogy megvédjük személyes adatait az elvesztéstől, ellopástól és visszaéléstől, valamint a jogosulatlan hozzáféréstől, nyilvánosságra hozataltól, megváltoztatástól és megsemmisítéstől.

Személyes adatainak megőrzése vállalati szinten

Személyes adatai biztonságának biztosítása érdekében az adatvédelmi és biztonsági gyakorlatokat közöljük alkalmazottainkkal, és szigorúan betartjuk az adatvédelmi gyakorlatokat.

Óra és előadás a témában: "A legegyszerűbb trigonometrikus egyenletek megoldása"

Kiegészítő anyagok
Kedves felhasználók, ne felejtsék el megírni észrevételeiket, visszajelzéseiket, javaslataikat! Az összes anyagot egy vírusirtó program ellenőrzi.

Kézikönyvek és szimulátorok az "Integral" online áruházban az 1C 10. osztályhoz
Geometriai feladatokat oldunk meg. Interaktív feladatok térépítéshez
Szoftverkörnyezet "1C: Mathematical Constructor 6.1"

Mit fogunk tanulni:
1. Mik azok a trigonometrikus egyenletek?

3. Két fő módszer a trigonometrikus egyenletek megoldására.
4. Homogén trigonometrikus egyenletek.
5. Példák.

Mik azok a trigonometrikus egyenletek?

Srácok, már tanulmányoztuk az arcszinust, arkoszinust, arctangenst és arckotangenst. Most nézzük meg általában a trigonometrikus egyenleteket.

Trigonometrikus egyenletek - olyan egyenletek, amelyekben a változó a trigonometrikus függvény jele alatt található.

Megismételjük a legegyszerűbb trigonometrikus egyenletek megoldásának formáját:

1) Ha |а|≤ 1, akkor a cos(x) = a egyenletnek van megoldása:

X= ± arccos(a) + 2πk

2) Ha |а|≤ 1, akkor a sin(x) = a egyenletnek van megoldása:

3) Ha |a| > 1, akkor a sin(x) = a és cos(x) = a egyenletnek nincs megoldása 4) A tg(x)=a egyenletnek van megoldása: x=arctg(a)+ πk

5) A ctg(x)=a egyenletnek van megoldása: x=arcctg(a)+ πk

Minden képletnél k egy egész szám

A legegyszerűbb trigonometrikus egyenletek alakja: Т(kx+m)=a, T- tetszőleges trigonometrikus függvény.

Példa.

Oldja meg az egyenleteket: a) sin(3x)= √3/2

Megoldás:

A) Jelöljük 3x=t, majd átírjuk az egyenletünket a következő alakba:

Ennek az egyenletnek a megoldása a következő lesz: t=((-1)^n)arcsin(√3/2)+ πn.

Az értéktáblázatból a következőt kapjuk: t=((-1)^n)×π/3+ πn.

Térjünk vissza a változónkhoz: 3x =((-1)^n)×π/3+ πn,

Ekkor x= ((-1)^n)×π/9+ πn/3

Válasz: x= ((-1)^n)×π/9+ πn/3, ahol n egész szám. (-1)^n - mínusz egy n hatványához.

További példák trigonometrikus egyenletekre.

Oldja meg az egyenleteket: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Megoldás:

A) Ezúttal rögtön az egyenlet gyökereinek kiszámításához térünk át:

X/5= ± arccos(1) + 2πk. Ekkor x/5= πk => x=5πk

Válasz: x=5πk, ahol k egész szám.

B) A következő alakban írjuk: 3x- π/3=arctg(√3)+ πk. Tudjuk, hogy: arctg(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Válasz: x=2π/9 + πk/3, ahol k egész szám.

Oldja meg az egyenleteket: cos(4x)= √2/2. És keresse meg a szegmens összes gyökerét.

Megoldás:

majd eldöntjük Általános nézet egyenletünk: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Most pedig lássuk, milyen gyökerek nyúlnak bele a szegmensünkbe. k esetén Ha k=0, x= π/16, az adott szegmensben vagyunk.
A k=1, x= π/16+ π/2=9π/16 mellett ismét ütnek.
K=2 esetén x= π/16+ π=17π/16, de itt nem találtunk, ami azt jelenti, hogy nagy k-ra sem fogunk ütni.

Válasz: x= π/16, x= 9π/16

Két fő megoldási mód.

A legegyszerűbb trigonometrikus egyenleteket vettük figyelembe, de vannak bonyolultabbak is. Ezek megoldására egy új változó bevezetésének módszerét és a faktorizációs módszert alkalmazzuk. Nézzünk példákat.

Oldjuk meg az egyenletet:

Megoldás:
Egyenletünk megoldásához egy új változó bevezetésének módszerét használjuk, jelölése: t=tg(x).

A csere eredményeként a következőt kapjuk: t 2 + 2t -1 = 0

Keressük a gyökereket másodfokú egyenlet t=-1 és t=1/3

Ekkor tg(x)=-1 és tg(x)=1/3, a legegyszerűbb trigonometrikus egyenletet kaptuk, keressük meg a gyökereit.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Válasz: x= -π/4+πk; x=arctg(1/3) + πk.

Példa egyenlet megoldására

Oldja meg az egyenleteket: 2sin 2 (x) + 3 cos(x) = 0

Megoldás:

Használjuk az azonosságot: sin 2 (x) + cos 2 (x)=1

Az egyenletünk a következő: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos (x) -2 = 0

Vezessük be a t=cos(x) helyettesítést: 2t 2 -3t - 2 = 0

A másodfokú egyenletünk megoldása a gyökök: t=2 és t=-1/2

Ekkor cos(x)=2 és cos(x)=-1/2.

Mert A koszinusz nem vehet fel egynél nagyobb értékeket, akkor a cos(x)=2-nek nincs gyökere.

cos(x)=-1/2 esetén: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Válasz: x= ±2π/3 + 2πk

Homogén trigonometrikus egyenletek.

Definíció: Az a sin(x)+b cos(x) alakú egyenletet elsőfokú homogén trigonometrikus egyenleteknek nevezzük.

Az alak egyenletei

másodfokú homogén trigonometrikus egyenletek.

Egy elsőfokú homogén trigonometrikus egyenlet megoldásához elosztjuk cos(x)-szel: Lehetetlen koszinuszos osztani, ha az egyenlő nullával, ügyeljünk arra, hogy ez ne így legyen:
Legyen cos(x)=0, akkor asin(x)+0=0 => sin(x)=0, de a szinusz és a koszinusz nem egyenlő nullával egyszerre, ellentmondást kaptunk, így nyugodtan oszthatjuk nullával.

Oldja meg az egyenletet:
Példa: cos 2 (x) + sin(x) cos(x) = 0

Megoldás:

Vegyük ki a közös tényezőt: cos(x)(c0s(x) + sin (x)) = 0

Ezután két egyenletet kell megoldanunk:

cos(x)=0 és cos(x)+sin(x)=0

Cos(x)=0 x= π/2 + πk esetén;

Tekintsük a cos(x)+sin(x)=0 egyenletet. Osszuk el az egyenletünket cos(x)-szel:

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Válasz: x= π/2 + πk és x= -π/4+πk

Hogyan lehet másodfokú homogén trigonometrikus egyenleteket megoldani?
Srácok, mindig tartsátok be ezeket a szabályokat!

1. Nézze meg, mennyivel egyenlő az a együttható, ha a \u003d 0, akkor az egyenletünk a következő formában lesz: cos (x) (bsin (x) + ccos (x)), amelynek megoldására az előző példán található csúszik

2. Ha a≠0, akkor az egyenlet mindkét részét el kell osztani a koszinusz négyzetével, így kapjuk:


Elvégezzük a t=tg(x) változó változtatását, és a következő egyenletet kapjuk:

Példa megoldása #:3

Oldja meg az egyenletet:
Megoldás:

Osszuk el az egyenlet mindkét oldalát koszinusz négyzettel:

Megváltoztatjuk a t=tg(x) változót: t 2 + 2 t - 3 = 0

Határozzuk meg a másodfokú egyenlet gyökereit: t=-3 és t=1!

Ekkor: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Válasz: x=-arctg(3) + πk és x= π/4+ πk

Példa megoldása #:4

Oldja meg az egyenletet:

Megoldás:
Alakítsuk át a kifejezésünket:


Ilyen egyenleteket tudunk megoldani: x= - π/4 + 2πk és x=5π/4 + 2πk

Válasz: x= - π/4 + 2πk és x=5π/4 + 2πk

Példa megoldása #:5

Oldja meg az egyenletet:

Megoldás:
Alakítsuk át a kifejezésünket:


Bevezetjük a tg(2x)=t:2 2 - 5t + 2 = 0 helyettesítést

A másodfokú egyenletünk megoldása a gyökök: t=-2 és t=1/2

Ekkor a következőt kapjuk: tg(2x)=-2 és tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Válasz: x=-arctg(2)/2 + πk/2 és x=arctg(1/2)/2+ πk/2

Önálló megoldási feladatok.

1) Oldja meg az egyenletet!

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 e) ctg(0,5x) = -1,7

2) Oldja meg az egyenleteket: sin(3x)= √3/2. És keresse meg az összes gyökeret a [π/2; π].

3) Oldja meg az egyenletet: ctg 2 (x) + 2ctg(x) + 1 =0

4) Oldja meg az egyenletet: 3 sin 2 (x) + √3sin (x) cos(x) = 0

5) Oldja meg az egyenletet: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Oldja meg az egyenletet: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)