A másodfokú egyenletek típusai. Másodfokú egyenletek megoldási módjai

Az „Egyenletek megoldása” téma folytatásaként a cikk anyaga bemutatja a másodfokú egyenleteket.

Tekintsünk meg mindent részletesen: a másodfokú egyenlet lényegét és jelölését, állítsuk be a kísérő feltételeket, elemezzük a hiányos és a megoldási sémát. teljes egyenletek, megismerkedünk a gyökök és a diszkrimináns képletével, kapcsolatokat létesítünk a gyökök és együtthatók között, és természetesen gyakorlati példák vizuális megoldását is adjuk.

Yandex.RTB R-A-339285-1

Másodfokú egyenlet, típusai

1. definíció

Másodfokú egyenletígy van felírva az egyenlet a x 2 + b x + c = 0, Ahol x– változó, a , b és c néhány szám, míg a nem nulla.

A másodfokú egyenleteket gyakran másodfokú egyenleteknek is nevezik, mivel valójában a másodfokú egyenlet egy másodfokú algebrai egyenlet.

Adjunk egy példát az adott definíció illusztrálására: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 stb. másodfokú egyenletek.

2. definíció

Számok a , b és c a másodfokú egyenlet együtthatói a x 2 + b x + c = 0, míg az együttható a nevezzük az első, vagy idősebb, vagy együttható x 2, b - a második együttható, vagy együttható at x, A c szabad tagnak nevezték.

Például a másodfokú egyenletben 6 x 2 - 2 x - 11 = 0 a legmagasabb együttható 6, a második együttható az − 2 , és a szabad tag egyenlő − 11 . Figyeljünk arra, hogy amikor az együtthatók bés/vagy c negatív, akkor a gyorsított alakot használjuk 6 x 2 - 2 x - 11 = 0, de nem 6 x 2 + (− 2) x + (− 11) = 0.

Tisztázzuk ezt a szempontot is: ha az együtthatók aés/vagy b egyenlő 1 vagy − 1 , akkor nem vehetnek kifejezetten részt a másodfokú egyenlet megírásában, amit a jelzett numerikus együtthatók felírásának sajátosságai magyaráznak. Például a másodfokú egyenletben y 2 − y + 7 = 0 a szenior együttható 1, a második pedig az − 1 .

Redukált és nem redukált másodfokú egyenletek

Az első együttható értéke szerint a másodfokú egyenleteket redukáltra és nem redukáltra osztjuk.

3. definíció

Csökkentett másodfokú egyenlet egy másodfokú egyenlet, ahol a vezető együttható 1 . A vezető együttható egyéb értékei esetében a másodfokú egyenlet redukálatlan.

Íme néhány példa: az x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0 másodfokú egyenletek redukálva vannak, amelyek mindegyikében a vezető együttható 1 .

9 x 2 - x - 2 = 0- redukálatlan másodfokú egyenlet, ahol az első együttható különbözik 1 .

Bármely redukálatlan másodfokú egyenlet átalakítható redukált egyenletté, ha mindkét részét elosztjuk az első együtthatóval (ekvivalens transzformáció). A transzformált egyenletnek ugyanazok a gyökerei lesznek, mint az adott nem redukált egyenletnek, vagy egyáltalán nem lesz gyöke.

Megfontolás esettanulmány lehetővé teszi számunkra, hogy vizuálisan demonstráljuk a redukálatlan másodfokú egyenletről a redukáltra való átmenetet.

1. példa

Adott a 6 x 2 + 18 x − 7 = 0 egyenlet . Az eredeti egyenletet redukált formára kell konvertálni.

Megoldás

A fenti séma szerint az eredeti egyenlet mindkét részét elosztjuk a 6 vezető együtthatóval. Akkor kapjuk: (6 x 2 + 18 x - 7) : 3 = 0:3, és ez ugyanaz, mint: (6 x 2) : 3 + (18 x) : 3 - 7: 3 = 0és tovább: (6:6) x 2 + (18:6) x − 7: 6 = 0 . Innen: x 2 + 3 x - 1 1 6 = 0 . Így az adott egyenletet kapjuk.

Válasz: x 2 + 3 x - 1 1 6 = 0 .

Teljes és nem teljes másodfokú egyenletek

Térjünk rá a másodfokú egyenlet definíciójára. Ebben azt határoztuk meg a ≠ 0. Hasonló feltétel szükséges az egyenlethez a x 2 + b x + c = 0 pontosan négyzet alakú volt, mivel a = 0 lényegében átalakul azzá lineáris egyenlet b x + c = 0.

Abban az esetben, ha az együtthatók bÉs c nullával egyenlőek (ami külön-külön és együttesen is lehetséges), a másodfokú egyenletet hiányosnak nevezzük.

4. definíció

Hiányos másodfokú egyenlet egy másodfokú egyenlet a x 2 + b x + c \u003d 0, ahol legalább az egyik együttható bÉs c(vagy mindkettő) nulla.

Teljes másodfokú egyenlet egy másodfokú egyenlet, amelyben az összes numerikus együttható nem egyenlő nullával.

Beszéljük meg, miért a típusok másodfokú egyenletek ilyen neveket adnak.

Ha b = 0, a másodfokú egyenlet a következő alakot veszi fel a x 2 + 0 x + c = 0, ami megegyezik a a x 2 + c = 0. Nál nél c = 0 a másodfokú egyenletet úgy írjuk fel a x 2 + b x + 0 = 0, ami egyenértékű a x 2 + b x = 0. Nál nél b = 0És c = 0 az egyenlet alakot vesz fel a x 2 = 0. Az általunk kapott egyenletek abban különböznek a teljes másodfokú egyenlettől, hogy bal oldaluk nem tartalmaz sem x változós tagot, sem szabad tagot, vagy mindkettőt egyszerre. Valójában ez a tény adta a nevet az ilyen típusú egyenleteknek - hiányos.

Például x 2 + 3 x + 4 = 0 és − 7 x 2 − 2 x + 1, 3 = 0 teljes másodfokú egyenletek; x 2 \u003d 0, − 5 x 2 = 0; 11 x 2 + 2 = 0, − x 2 − 6 x = 0 nem teljes másodfokú egyenletek.

Hiányos másodfokú egyenletek megoldása

A fent megadott definíció lehetővé teszi a hiányos másodfokú egyenletek következő típusainak megkülönböztetését:

  • a x 2 = 0, együtthatók felelnek meg egy ilyen egyenletnek b = 0és c = 0;
  • a x 2 + c = 0 b \u003d 0 esetén;
  • a x 2 + b x = 0 c = 0 esetén.

Tekintsük egymás után az egyes nem teljes másodfokú egyenlettípusok megoldását.

Az a x 2 \u003d 0 egyenlet megoldása

Mint fentebb említettük, egy ilyen egyenlet megfelel az együtthatóknak bÉs c, egyenlő nullával. Az egyenlet a x 2 = 0 ekvivalens egyenletté alakítható x2 = 0, amelyet úgy kapunk, hogy az eredeti egyenlet mindkét oldalát elosztjuk a számmal a, nem egyenlő nullával. A nyilvánvaló tény az, hogy az egyenlet gyökere x2 = 0 nulla, mert 0 2 = 0 . Ennek az egyenletnek nincs más gyöke, amit a fok tulajdonságai magyaráznak: tetszőleges számra p , nem egyenlő nullával, az egyenlőtlenség igaz p2 > 0, amiből az következik, hogy mikor p ≠ 0 egyenlőség p2 = 0 soha nem fogják elérni.

5. definíció

Így az a x 2 = 0 nem teljes másodfokú egyenlethez van egy egyedi gyök x=0.

2. példa

Például oldjuk meg a nem teljes másodfokú egyenletet − 3 x 2 = 0. Ez egyenértékű az egyenlettel x2 = 0, egyetlen gyökere az x=0, akkor az eredeti egyenletnek egyetlen gyöke - nulla.

A megoldást a következőképpen foglaljuk össze:

− 3 x 2 \u003d 0, x 2 = 0, x = 0.

Az a x 2 + c \u003d 0 egyenlet megoldása

A következő a sorban a hiányos másodfokú egyenletek megoldása, ahol b \u003d 0, c ≠ 0, vagyis a következő alakú egyenletek a x 2 + c = 0. Alakítsuk át ezt az egyenletet úgy, hogy átvisszük a tagot az egyenlet egyik oldaláról a másikra, az előjelet az ellenkezőjére változtatjuk, és az egyenlet mindkét oldalát elosztjuk egy olyan számmal, amely nem egyenlő nullával:

  • elviselni c jobb oldalra, ami megadja az egyenletet a x 2 = − c;
  • osszuk el az egyenlet mindkét oldalát a, eredményül kapjuk az x = - c a .

Transzformációink ekvivalensek, illetve a kapott egyenlet is ekvivalens az eredetivel, és ez a tény lehetővé teszi az egyenlet gyökereire vonatkozó következtetés levonását. Melyek az értékek aÉs c a kifejezés értékétől függ - c a: lehet mínusz jele (például ha a = 1És c = 2, akkor - c a = - 2 1 = - 2) vagy egy pluszjel (például ha a = -2És c=6, akkor - c a = - 6 - 2 = 3); nem egyenlő a nullával, mert c ≠ 0. Lazítsunk részletesebben azokon a helyzeteken, amikor - c a< 0 и - c a > 0 .

Abban az esetben, ha - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа p p 2 = - c a egyenlőség nem lehet igaz.

Minden más, ha - c a > 0: emlékezzen a négyzetgyökre, és nyilvánvalóvá válik, hogy az x 2 \u003d - c a egyenlet gyöke a - c a szám lesz, mivel - c a 2 \u003d - c a. Könnyen megérthető, hogy a - - c a - szám az x 2 = - c a egyenlet gyöke is: valóban, - - c a 2 = - c a .

Az egyenletnek nem lesz más gyökere. Ezt az ellenkező módszerrel demonstrálhatjuk. Először állítsuk be a fent talált gyökök jelölését, mint x 1És − x 1. Tegyük fel, hogy az x 2 = - c a egyenletnek is van gyöke x2, ami eltér a gyökerektől x 1És − x 1. Ezt úgy tudjuk, hogy behelyettesítjük az egyenletbe ahelyett x gyökereiből az egyenletet tisztességes numerikus egyenlőséggé alakítjuk.

Mert x 1És − x 1írd: x 1 2 = - c a , és for x2- x 2 2 \u003d - c a. A numerikus egyenlőségek tulajdonságai alapján tagonként kivonunk egy valódi egyenlőséget a másikból, ami a következőt kapja: x 1 2 − x 2 2 = 0. Használja a számműveletek tulajdonságait az utolsó egyenlőség átírásához (x 1 - x 2) (x 1 + x 2) = 0. Ismeretes, hogy két szám szorzata akkor és csak akkor nulla, ha legalább az egyik szám nulla. Az elmondottakból az következik x1 − x2 = 0és/vagy x1 + x2 = 0, ami ugyanaz x2 = x1és/vagy x 2 = − x 1. Nyilvánvaló ellentmondás merült fel, mert eleinte abban állapodtak meg, hogy az egyenlet gyökere x2 eltér x 1És − x 1. Tehát bebizonyítottuk, hogy az egyenletnek nincs más gyökere, mint x = - c a és x = - - c a .

Összefoglaljuk az összes fenti érvet.

6. definíció

Hiányos másodfokú egyenlet a x 2 + c = 0 ekvivalens az x 2 = - c a egyenlettel, amely:

  • nem lesz gyökere a - c a< 0 ;
  • két gyöke lesz x = - c a és x = - - c a , ha - c a > 0 .

Mondjunk példákat az egyenletek megoldására a x 2 + c = 0.

3. példa

Adott egy másodfokú egyenlet 9 x 2 + 7 = 0 . Meg kell találni a megoldását.

Megoldás

A szabad tagot átvisszük az egyenlet jobb oldalára, ekkor az egyenlet alakot ölt 9 x 2 \u003d - 7.
A kapott egyenlet mindkét oldalát elosztjuk 9 , akkor x 2 = - 7 9 . A jobb oldalon egy mínuszjellel ellátott számot látunk, ami azt jelenti: adott egyenlet nincsenek gyökerei. Ezután az eredeti hiányos másodfokú egyenlet 9 x 2 + 7 = 0 nem lesznek gyökerei.

Válasz: az egyenlet 9 x 2 + 7 = 0 nincsenek gyökerei.

4. példa

Meg kell oldani az egyenletet − x2 + 36 = 0.

Megoldás

Tegyük át a 36-ot a jobb oldalra: − x 2 = − 36.
Osszuk fel mindkét részt − 1 , kapunk x2 = 36. A jobb oldalon egy pozitív szám található, amiből arra következtethetünk x = 36 vagy x = - 36 .
Kivonjuk a gyökeret, és felírjuk a végeredményt: egy hiányos másodfokú egyenlet − x2 + 36 = 0 két gyökere van x=6 vagy x = -6.

Válasz: x=6 vagy x = -6.

Az a x 2 +b x=0 egyenlet megoldása

Elemezzük a harmadik típusú nem teljes másodfokú egyenletet, amikor c = 0. Megoldást találni egy nem teljes másodfokú egyenletre a x 2 + b x = 0, a faktorizációs módszert használjuk. Tényezőzzük az egyenlet bal oldalán lévő polinomot, a közös tényezőt a zárójelekből kivéve x. Ez a lépés lehetővé teszi az eredeti, hiányos másodfokú egyenlet megfelelőjére történő átalakítását x (a x + b) = 0. Ez az egyenlet pedig ekvivalens az egyenletkészlettel x=0És a x + b = 0. Az egyenlet a x + b = 0 lineáris, és annak gyökere: x = − b a.

7. definíció

Így a nem teljes másodfokú egyenlet a x 2 + b x = 0 két gyökere lesz x=0És x = − b a.

Rögzítsük az anyagot egy példával.

5. példa

Meg kell találni a 2 3 · x 2 - 2 2 7 · x = 0 egyenlet megoldását.

Megoldás

Vegyük ki x a zárójelen kívülre, és megkapjuk az x · 2 3 · x - 2 2 7 = 0 egyenletet. Ez az egyenlet ekvivalens az egyenletekkel x=0és 2 3 x - 2 2 7 = 0 . Most meg kell oldania a kapott lineáris egyenletet: 2 3 · x = 2 2 7 , x = 2 2 7 2 3 .

Az egyenlet megoldását röviden a következőképpen írjuk fel:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 vagy 2 3 x - 2 2 7 = 0

x = 0 vagy x = 3 3 7

Válasz: x = 0, x = 3 3 7.

Diszkrimináns, másodfokú egyenlet gyökeinek képlete

A másodfokú egyenletek megoldásához van egy gyökképlet:

8. definíció

x = - b ± D 2 a, ahol D = b 2 − 4 a c a másodfokú egyenlet úgynevezett diszkriminánsa.

Az x \u003d - b ± D 2 a beírása lényegében azt jelenti, hogy x 1 \u003d - b + D 2 a, x 2 \u003d - b - D 2 a.

Hasznos lesz megérteni, hogyan származtatták a jelzett képletet és hogyan kell alkalmazni.

Másodfokú egyenlet gyökképletének levezetése

Tegyük fel, hogy egy másodfokú egyenlet megoldásával állunk szemben a x 2 + b x + c = 0. Végezzünk el számos ekvivalens transzformációt:

  • ossza el az egyenlet mindkét oldalát a számmal a, nullától eltérően megkapjuk a redukált másodfokú egyenletet: x 2 + b a x + c a \u003d 0;
  • kiszemel teljes négyzet az eredményül kapott egyenlet bal oldalán:
    x 2 + b a x + c a = x 2 + 2 b 2 a x + b 2 a 2 - b 2 a 2 + c a = = x + b 2 a 2 - b 2 a 2 + c a
    Ezt követően az egyenlet a következőképpen alakul: x + b 2 a 2 - b 2 a 2 + c a \u003d 0;
  • most az utolsó két tagot át lehet vinni a jobb oldalra, az előjelet az ellenkezőjére változtatva, ami után kapjuk: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • végül átalakítjuk az utolsó egyenlőség jobb oldalára írt kifejezést:
    b 2 a 2 - c a \u003d b 2 4 a 2 - c a \u003d b 2 4 a 2 - 4 a c 4 a 2 \u003d b 2 - 4 a c 4 a 2.

Így elérkeztünk az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlethez, amely ekvivalens az eredeti egyenlettel a x 2 + b x + c = 0.

Az előző bekezdésekben az ilyen egyenletek megoldását tárgyaltuk (a nem teljes másodfokú egyenletek megoldása). A már megszerzett tapasztalatok lehetővé teszik az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlet gyökereire vonatkozó következtetés levonását:

  • b 2 - 4 a c 4 a 2 esetén< 0 уравнение не имеет действительных решений;
  • b 2 - 4 · a · c 4 · a 2 = 0 esetén az egyenlet alakja x + b 2 · a 2 = 0, akkor x + b 2 · a = 0.

Innen az egyetlen gyök x = - b 2 · a nyilvánvaló;

  • b 2 - 4 a c 4 a 2 > 0 esetén a következő igaz: x + b 2 a = b 2 - 4 a c 4 a 2 vagy x = b 2 a - b 2 - 4 a c 4 a 2, ami megegyezik az x + - b 2 a = b 2 - 4 a c 4 a 2 vagy x - b 2 a 2 , 4 a c 4 a 2 - 4 a c 4 a 2 - 4 a c 4 a 2 értékkel. az egyenletnek két gyöke van.

Arra a következtetésre juthatunk, hogy az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlet (és innen az eredeti egyenlet) gyökeinek megléte vagy hiánya a jobb oldalra írt b 2 - 4 a c 4 a 2 kifejezés előjelétől függ. És ennek a kifejezésnek a jelét a számláló jele adja (a nevező 4 és 2 mindig pozitív lesz), vagyis a kifejezés jele b 2 − 4 a c. Ez a kifejezés b 2 − 4 a c név van megadva - a másodfokú egyenlet diszkriminánsa és a D betű a jelölése. Itt leírhatja a diszkrimináns lényegét - értékéből és előjeléből arra következtetnek, hogy a másodfokú egyenletnek lesz-e valódi gyöke, és ha igen, hány gyöke - egy vagy kettő.

Térjünk vissza az x + b 2 a 2 = b 2 - 4 a c 4 a 2 egyenlethez. Írjuk át a diszkriminancia jelöléssel: x + b 2 · a 2 = D 4 · a 2 .

Foglaljuk össze a következtetéseket:

9. definíció

  • nál nél D< 0 az egyenletnek nincs valódi gyökere;
  • nál nél D=0 az egyenletnek egyetlen gyöke van x = - b 2 · a ;
  • nál nél D > 0 az egyenletnek két gyöke van: x \u003d - b 2 a + D 4 a 2 vagy x \u003d - b 2 a - D 4 a 2. A gyökök tulajdonságai alapján ezek a gyökök a következőképpen írhatók fel: x \u003d - b 2 a + D 2 a vagy - b 2 a - D 2 a. És amikor megnyitjuk a modulokat, és a törteket közös nevezőre csökkentjük, a következőket kapjuk: x \u003d - b + D 2 a, x \u003d - b - D 2 a.

Tehát okoskodásunk eredménye a másodfokú egyenlet gyökeinek képletének levezetése volt:

x = - b + D 2 a, x = - b - D 2 a, diszkrimináns D képlettel számítjuk ki D = b 2 − 4 a c.

Ezek a formulák lehetővé teszik mindkét valós gyök meghatározását, ha a diszkrimináns nagyobb, mint nulla. Ha a diszkrimináns nulla, mindkét képlet alkalmazása ugyanazt a gyökét adja a másodfokú egyenlet egyetlen megoldásaként. Abban az esetben, ha a diszkrimináns negatív, és megpróbáljuk a másodfokú gyökképletet használni, akkor szembe kell néznünk a kivonattal. Négyzetgyök negatív számból, ami túlmutat a valós számokon. Negatív diszkrimináns esetén a másodfokú egyenletnek nem lesz valós gyöke, de lehetséges egy összetett konjugált gyökpár, amelyet az általunk kapott gyökképletek határoznak meg.

Másodfokú egyenletek megoldásának algoritmusa gyökképletekkel

A másodfokú egyenletet a gyökképlet azonnali felhasználásával is meg lehet oldani, de ez alapvetően akkor történik meg, ha összetett gyököket kell találni.

Az esetek nagy részében a keresés általában nem összetett, hanem másodfokú egyenlet valós gyökereire vonatkozik. Ekkor optimális, mielőtt a másodfokú egyenlet gyökére vonatkozó képleteket használnánk, először meghatározzuk a diszkriminánst, és megbizonyosodunk arról, hogy az nem negatív (ellenkező esetben arra a következtetésre jutunk, hogy az egyenletnek nincs valódi gyöke), majd folytatjuk a gyökök értékének kiszámítását.

A fenti érvelés lehetővé teszi egy másodfokú egyenlet megoldására szolgáló algoritmus megfogalmazását.

10. definíció

Másodfokú egyenlet megoldására a x 2 + b x + c = 0, szükséges:

  • képlet szerint D = b 2 − 4 a c keresse meg a diszkrimináns értékét;
  • D-nél< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • ha D = 0, keressük meg az egyenlet egyetlen gyökét az x = - b 2 · a képlettel;
  • ha D > 0, határozzuk meg a másodfokú egyenlet két valós gyökét az x = - b ± D 2 · a képlettel.

Vegye figyelembe, hogy ha a diszkrimináns nulla, használhatja az x = - b ± D 2 · a képletet, amely ugyanazt az eredményt adja, mint az x = - b 2 · a képlet.

Vegye figyelembe a példákat.

Példák másodfokú egyenletek megoldására

Adjunk példát a megoldásra különböző értékeket diszkriminatív.

6. példa

Meg kell találni az egyenlet gyökereit x 2 + 2 x - 6 = 0.

Megoldás

Felírjuk a másodfokú egyenlet numerikus együtthatóit: a \u003d 1, b \u003d 2 és c = – 6. Ezután az algoritmus szerint járunk el, azaz. Kezdjük el kiszámolni a diszkriminánst, amelyre behelyettesítjük az a , b együtthatókat És c a diszkrimináns képletbe: D = b 2 − 4 a c = 2 2 − 4 1 (− 6) = 4 + 24 = 28 .

Így azt kaptuk, hogy D > 0, ami azt jelenti, hogy az eredeti egyenletnek két valós gyöke lesz.
Megtalálásukhoz az x \u003d - b ± D 2 · a gyökképletet használjuk, és a megfelelő értékeket helyettesítve a következőt kapjuk: x \u003d - 2 ± 28 2 · 1. A kapott kifejezést egyszerűsítjük úgy, hogy a faktort kivesszük a gyök előjeléből, majd a tört redukálásával:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 vagy x = - 2 - 2 7 2

x = - 1 + 7 vagy x = - 1 - 7

Válasz: x = - 1 + 7 , x = - 1 - 7 .

7. példa

Másodfokú egyenletet kell megoldani − 4 x 2 + 28 x − 49 = 0.

Megoldás

Határozzuk meg a diszkriminánst: D = 28 2 - 4 (- 4) (- 49) = 784 - 784 = 0. Ezzel a diszkrimináns értékkel az eredeti egyenletnek csak egy gyöke lesz, amelyet az x = - b 2 · a képlet határoz meg.

x = - 28 2 (- 4) x = 3, 5

Válasz: x = 3, 5.

8. példa

Meg kell oldani az egyenletet 5 év 2 + 6 év + 2 = 0

Megoldás

Ennek az egyenletnek a numerikus együtthatói a következők lesznek: a = 5 , b = 6 és c = 2 . A diszkrimináns meghatározásához ezeket az értékeket használjuk: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . A kiszámított diszkrimináns negatív, így az eredeti másodfokú egyenletnek nincs valódi gyökere.

Abban az esetben, ha a feladat összetett gyökök megjelölése, akkor a gyökképletet alkalmazzuk komplex számokkal végzett műveletek végrehajtásával:

x \u003d - 6 ± - 4 2 5,

x \u003d - 6 + 2 i 10 vagy x \u003d - 6 - 2 i 10,

x = - 3 5 + 1 5 i vagy x = - 3 5 - 1 5 i .

Válasz: nincsenek igazi gyökerek; az összetett gyökök: - 3 5 + 1 5 i , - 3 5 - 1 5 i .

Az iskolai tantervben standardként nem írják elő az összetett gyökerek keresését, ezért ha a döntés során a diszkriminánst nemlegesnek definiálják, azonnal rögzítésre kerül a válasz, hogy nincsenek valódi gyökerek.

Gyökérképlet akár második együtthatóhoz

Az x \u003d - b ± D 2 a (D \u003d b 2 - 4 a c) gyökképlet lehetővé teszi egy másik, kompaktabb képlet megszerzését, amely lehetővé teszi, hogy megoldásokat találjon másodfokú egyenletekre, amelyeknek páros együtthatója van x-ben (vagy 2 n formájú együtthatóval, például 2 3 vagy 14 n2 n7). Mutassuk meg, hogyan keletkezik ez a képlet.

Tegyük fel, hogy azzal a feladattal állunk szemben, hogy megoldást találjunk az a · x 2 + 2 · n · x + c = 0 másodfokú egyenletre. Az algoritmus szerint járunk el: meghatározzuk a D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c) diszkriminánst, majd a gyökképletet használjuk:

x \u003d - 2 n ± D 2 a, x \u003d - 2 n ± 4 n 2 - a c 2 a, x \u003d - 2 n ± 2 n 2 - a c 2 a, x \u003d - n ± n 2 - a c a.

Jelöljük az n 2 − a c kifejezést D 1-nek (néha D "-nek jelölik). Ekkor a vizsgált másodfokú egyenlet gyökeinek képlete a második 2 n együtthatóval a következőképpen alakul:

x \u003d - n ± D 1 a, ahol D 1 \u003d n 2 - a c.

Könnyen belátható, hogy D = 4 · D 1 vagy D 1 = D 4 . Más szóval, D 1 a diszkrimináns negyede. Nyilvánvaló, hogy D 1 előjele megegyezik D előjelével, ami azt jelenti, hogy D 1 előjele egy másodfokú egyenlet gyökeinek meglétére vagy hiányára is szolgálhat.

11. definíció

Így egy 2 n-es második együtthatójú másodfokú egyenlet megoldásához szükséges:

  • keresse meg D 1 = n 2 − a c ;
  • a D 1-ben< 0 сделать вывод, что действительных корней нет;
  • D 1 = 0 esetén határozza meg az egyenlet egyetlen gyökét az x = - n a képlettel;
  • D 1 > 0 esetén határozzunk meg két valós gyöket az x = - n ± D 1 képlettel a.

9. példa

Meg kell oldani az 5 · x 2 − 6 · x − 32 = 0 másodfokú egyenletet.

Megoldás

Az adott egyenlet második együtthatója 2 · (− 3) . Ezután átírjuk a megadott másodfokú egyenletet a következőre: 5 · x 2 + 2 · (− 3) · x − 32 = 0, ahol a = 5, n = − 3 és c = − 32.

Számítsuk ki a diszkrimináns negyedik részét: D 1 = n 2 − a c = (− 3) 2 − 5 (− 32) = 9 + 160 = 169 . A kapott érték pozitív, ami azt jelenti, hogy az egyenletnek két valós gyöke van. Meghatározzuk őket a gyökök megfelelő képletével:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 vagy x = 3 - 13 5

x = 3 1 5 vagy x = - 2

Lehetséges lenne a másodfokú egyenlet gyökeinek szokásos képletével is számításokat végezni, de ebben az esetben a megoldás körülményesebb lenne.

Válasz: x = 3 1 5 vagy x = - 2 .

Másodfokú egyenletek formájának egyszerűsítése

Néha lehetséges az eredeti egyenlet alakjának optimalizálása, ami leegyszerűsíti a gyökerek kiszámításának folyamatát.

Például a 12 x 2 - 4 x - 7 \u003d 0 másodfokú egyenlet egyértelműen kényelmesebb megoldáshoz, mint az 1200 x 2 - 400 x - 700 \u003d 0.

Gyakrabban a másodfokú egyenlet alakjának egyszerűsítését úgy hajtják végre, hogy mindkét részét megszorozzák vagy osztják egy bizonyos számmal. Például fentebb bemutattuk az 1200 x 2 - 400 x - 700 = 0 egyenlet egyszerűsített ábrázolását, amelyet úgy kaptunk, hogy mindkét részét elosztjuk 100-zal.

Egy ilyen transzformáció akkor lehetséges, ha a másodfokú egyenlet együtthatói nem relatíve prímszámok. Ekkor gyakori, hogy az egyenlet mindkét oldalát elosztjuk a legnagyobbal közös osztó együtthatóinak abszolút értékei.

Példaként használjuk a 12 x 2 − 42 x + 48 = 0 másodfokú egyenletet. Határozzuk meg együtthatóinak abszolút értékeinek gcd-jét: gcd (12 , 42 , 48) = gcd(gcd (12 , 42) , 48) = gcd (6 , 48) = 6 . Osszuk el az eredeti másodfokú egyenlet mindkét részét 6-tal, és kapjuk a 2 · x 2 − 7 · x + 8 = 0 ekvivalens másodfokú egyenletet.

A másodfokú egyenlet mindkét oldalát megszorozva a törtegyütthatókat általában kiküszöböljük. Ebben az esetben szorozzuk meg együtthatói nevezőinek legkisebb közös többszörösével. Például, ha az 1 6 x 2 + 2 3 x - 3 \u003d 0 másodfokú egyenlet minden részét megszorozzuk LCM-mel (6, 3, 1) \u003d 6, akkor egyszerűbb formában lesz megírva: x 2 + 4 x - 18 \u003d.

Végül megjegyezzük, hogy szinte mindig megszabadulni a mínusztól a másodfokú egyenlet első együtthatójánál, megváltoztatva az egyenlet minden tagjának előjelét, amit úgy érünk el, hogy mindkét részt megszorozzuk (vagy osztjuk) −1-gyel. Például a - 2 x 2 - 3 x + 7 \u003d 0 másodfokú egyenletből áttérhet az egyszerűsített változatra 2 x 2 + 3 x - 7 \u003d 0.

A gyökök és az együtthatók kapcsolata

Az x = - b ± D 2 · a másodfokú egyenletek gyökeinek már ismert képlete numerikus együtthatóival fejezi ki az egyenlet gyökereit. Alapul véve ezt a képletet, lehetőségünk van más függőségek megadására a gyökök és az együtthatók között.

A leghíresebb és leginkább alkalmazható a Vieta-tétel képlete:

x 1 + x 2 \u003d - b a és x 2 \u003d c a.

Konkrétan, az adott másodfokú egyenletnél a gyökök összege a második ellentétes előjelű együttható, a gyökök szorzata pedig egyenlő a szabad taggal. Például a 3 · x 2 − 7 · x + 22 \u003d 0 másodfokú egyenlet alapján azonnal meghatározható, hogy gyökeinek összege 7 3, a gyökök szorzata pedig 22 3.

Számos más összefüggés is megtalálható a másodfokú egyenlet gyökei és együtthatói között. Például egy másodfokú egyenlet gyökeinek négyzetösszege kifejezhető együtthatókkal:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Ha hibát észlel a szövegben, jelölje ki, és nyomja meg a Ctrl+Enter billentyűkombinációt

BAN BEN modern társadalom a négyzetes változót tartalmazó egyenletekkel való operáció képessége számos tevékenységi területen hasznos lehet, és a gyakorlatban is széles körben alkalmazzák a tudományos és műszaki fejlesztésekben. Ezt a tengeri és folyami hajók, repülőgépek és rakéták tervezése bizonyítja. Az ilyen számítások segítségével meghatározzák a különböző testek, köztük az űrobjektumok mozgásának pályáit. A másodfokú egyenletek megoldására szolgáló példákat nem csak a gazdasági előrejelzésben, az épületek tervezésében és kivitelezésében, hanem a leghétköznapibb körülmények között is alkalmazzák. Szükség lehet rájuk kempingezéskor, sportrendezvényeken, üzletekben vásárláskor és más nagyon gyakori helyzetekben.

Bontsuk fel a kifejezést komponenstényezőkre

Az egyenlet mértékét a változó fokszámának maximális értéke határozza meg, amelyet az adott kifejezés tartalmaz. Ha egyenlő 2-vel, akkor egy ilyen egyenletet másodfokú egyenletnek nevezünk.

Ha a formulák nyelvén beszélünk, akkor ezek a kifejezések, akárhogy is néznek ki, mindig formába hozhatók, amikor a kifejezés bal oldala három tagból áll. Közülük: ax 2 (vagyis a változó négyzete az együtthatójával), bx (az ismeretlen a négyzet nélkül az együtthatójával) és c (a szabad komponens, azaz közös szám). Mindez a jobb oldalon 0. Abban az esetben, ha egy ilyen polinomnak az ax 2 kivételével nincs meg az egyik alkotótagja, azt hiányos másodfokú egyenletnek nevezzük. Elsőként olyan problémák megoldására érdemes példákat venni, amelyekben a változók értékét nem nehéz megtalálni.

Ha a kifejezés úgy néz ki, hogy a kifejezés jobb oldalán két tag van, pontosabban az ax 2 és a bx, akkor az x-et a legegyszerűbb a változó zárójelbe helyezésével találni. Most az egyenletünk így fog kinézni: x(ax+b). Továbbá nyilvánvalóvá válik, hogy vagy x=0, vagy a probléma a következő kifejezésből való változó keresésére redukálódik: ax+b=0. Ezt a szorzás egyik tulajdonsága diktálja. A szabály szerint két tényező szorzata csak akkor 0, ha az egyik nulla.

Példa

x=0 vagy 8x - 3 = 0

Ennek eredményeként az egyenlet két gyökét kapjuk: 0 és 0,375.

Az ilyen egyenletek leírhatják a testek gravitáció hatására történő mozgását, amelyek egy bizonyos ponttól indultak el, amelyet origónak tekintünk. Itt a matematikai jelölés a következő alakot ölti: y = v 0 t + gt 2 /2. A szükséges értékek behelyettesítésével, a jobb oldal 0-val való egyenlővé tételével és az esetleges ismeretlenek megtalálásával megtudhatja a test felemelkedésétől a leesésig eltelt időt, valamint sok más mennyiséget is. De erről később beszélünk.

Egy kifejezés faktorálása

A fent leírt szabály lehetővé teszi ezeknek a problémáknak és még sok másnak a megoldását nehéz esetek. Tekintsünk példákat az ilyen típusú másodfokú egyenletek megoldására.

X2 - 33x + 200 = 0

Ez négyzetes trinomikus teljes. Először is átalakítjuk a kifejezést, és faktorokra bontjuk. Ebből kettő van: (x-8) és (x-25) = 0. Ennek eredményeként két gyökünk van: 8 és 25.

A 9. osztályos másodfokú egyenletek megoldására vonatkozó példák lehetővé teszik, hogy ez a módszer nemcsak másodrendű, hanem akár harmad- és negyedrendű kifejezésekben is változót találjon.

Például: 2x 3 + 2x 2 - 18x - 18 = 0. Ha a jobb oldalt változóval faktorokká számoljuk, ezek közül három van, azaz (x + 1), (x-3) és (x + 3).

Ennek eredményeként nyilvánvalóvá válik, hogy ennek az egyenletnek három gyökere van: -3; -1; 3.

A négyzetgyök kivonása

A hiányos másodrendű egyenlet másik esete a betűk nyelvén írt kifejezés úgy, hogy a jobb oldal az ax 2 és c komponensekből épül fel. Itt a változó értékének megszerzéséhez a szabad tagot átvisszük a jobb oldalra, majd ezt követően az egyenlőség mindkét oldaláról kinyerjük a négyzetgyököt. Meg kell jegyezni, hogy ebben az esetben az egyenletnek általában két gyöke van. Kivételt képeznek a c kifejezést egyáltalán nem tartalmazó egyenlőségek, ahol a változó nullával egyenlő, valamint a kifejezések olyan változatai, amikor a jobb oldal negatívnak bizonyul. Ez utóbbi esetben egyáltalán nincs megoldás, mivel a fenti műveletek nem hajthatók végre gyökérrel. Meg kell fontolni az ilyen típusú másodfokú egyenletek megoldási példáit.

Ebben az esetben az egyenlet gyökerei a -4 és 4 számok lesznek.

A földterület kiszámítása

Az effajta számítások igénye már az ókorban felmerült, mert a matematika fejlődése azokban a távoli időkben nagyrészt annak volt köszönhető, hogy a földterületek területét és kerületét a legnagyobb pontossággal kellett meghatározni.

Ilyen jellegű feladatok alapján összeállított másodfokú egyenletek megoldására is érdemes példákat venni.

Tehát tegyük fel, hogy van egy téglalap alakú földdarab, amelynek hossza 16 méterrel több, mint a szélessége. Meg kell keresni a telek hosszát, szélességét és kerületét, ha ismert, hogy a területe 612 m 2.

Ha rátérünk az üzletre, először elkészítjük a szükséges egyenletet. Jelöljük a szakasz szélességét x-el, akkor a hossza (x + 16) lesz. A leírtakból következik, hogy a területet az x (x + 16) kifejezés határozza meg, ami a feladatunk feltétele szerint 612. Ez azt jelenti, hogy x (x + 16) \u003d 612.

A teljes másodfokú egyenletek megoldása, és ez a kifejezés éppen erről szól, nem végezhető el ugyanúgy. Miért? Bár ennek bal oldala továbbra is két tényezőt tartalmaz, ezek szorzata egyáltalán nem egyenlő 0-val, ezért itt más módszereket alkalmazunk.

Diszkrimináns

Először is elvégezzük a szükséges átalakításokat, majd kinézet ez a kifejezés így fog kinézni: x 2 + 16x - 612 = 0. Ez azt jelenti, hogy a korábban megadott szabványnak megfelelő formában kaptunk egy kifejezést, ahol a=1, b=16, c=-612.

Ez egy példa lehet másodfokú egyenletek megoldására a diszkrimináns segítségével. Itt szükséges számításokat séma szerint gyártjuk: D = b 2 - 4ac. Ez a segédérték nemcsak a kívánt értékek megtalálását teszi lehetővé a másodrendű egyenletben, hanem meghatározza a lehetséges opciók számát. D>0 esetben kettő van belőlük; D=0 esetén egy gyök van. Abban az esetben, ha D<0, никаких шансов для решения у уравнения вообще не имеется.

A gyökerekről és képletükről

Esetünkben a diszkrimináns: 256 - 4(-612) = 2704. Ez azt jelzi, hogy a problémánkra van válasz. Ha tudja, a másodfokú egyenletek megoldását az alábbi képlettel kell folytatni. Lehetővé teszi a gyökerek kiszámítását.

Ez azt jelenti, hogy a bemutatott esetben: x 1 =18, x 2 =-34. A második lehetőség ebben a dilemmában nem jelenthet megoldást, mert a telek mérete nem mérhető negatív értékekben, ami azt jelenti, hogy x (vagyis a telek szélessége) 18 m. Innen számítjuk a hosszt: 18 + 16 = 34, a kerületét pedig 2 (34 + 18) = 104 (m 2).

Példák és feladatok

Folytatjuk a másodfokú egyenletek tanulmányozását. Az alábbiakban példákat és ezek közül néhány részletes megoldását mutatjuk be.

1) 15x2 + 20x + 5 = 12x2 + 27x + 1

Vigyünk át mindent az egyenlőség bal oldalára, hajtsunk végre egy transzformációt, azaz megkapjuk az egyenlet alakját, amit általában standardnak neveznek, és egyenlővé tesszük a nullával.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

A hasonlók hozzáadása után meghatározzuk a diszkriminánst: D \u003d 49 - 48 \u003d 1. Tehát az egyenletünknek két gyöke lesz. A fenti képlet szerint számítjuk ki őket, ami azt jelenti, hogy az első 4/3, a második pedig 1 lesz.

2) Most másfajta rejtvényeket fogunk feltárni.

Nézzük meg, hogy vannak-e itt egyáltalán x 2 - 4x + 5 = 1 gyökök? A kimerítő válasz érdekében a polinomot a megfelelő ismert alakra hozzuk, és kiszámítjuk a diszkriminánst. Ebben a példában nem szükséges a másodfokú egyenletet megoldani, mert a probléma lényege egyáltalán nem ebben rejlik. Ebben az esetben D \u003d 16 - 20 \u003d -4, ami azt jelenti, hogy tényleg nincsenek gyökerek.

Vieta tétele

Kényelmes a másodfokú egyenletek megoldása a fenti képletekkel és a diszkriminánssal, ha az utóbbi értékéből kivonjuk a négyzetgyököt. De ez nem mindig történik meg. Ebben az esetben azonban sokféleképpen lehet megkapni a változók értékét. Példa: másodfokú egyenletek megoldása Vieta tételével. Nevét egy férfiról kapta, aki a 16. századi Franciaországban élt, és matematikai tehetségének és udvari kapcsolatainak köszönhetően ragyogó karriert futott be. Portréja a cikkben látható.

A minta, amelyet a híres francia észrevett, a következő volt. Bebizonyította, hogy az egyenlet gyökeinek összege -p=b/a, szorzatuk pedig q=c/a.

Most nézzük meg a konkrét feladatokat.

3x2 + 21x - 54 = 0

Az egyszerűség kedvéért alakítsuk át a kifejezést:

x 2 + 7x - 18 = 0

A Vieta-tételt használva ez a következőt kapja: a gyökök összege -7, a szorzatuk pedig -18. Innen azt kapjuk, hogy az egyenlet gyökerei a -9 és 2 számok. Ellenőrzés után megbizonyosodunk arról, hogy a változók ezen értékei valóban beleférnek-e a kifejezésbe.

Parabola grafikonja és egyenlete

A másodfokú függvény és a másodfokú egyenletek fogalma szorosan összefügg. Erre már volt példa korábban. Most nézzünk meg néhány matematikai rejtvényt kicsit részletesebben. Bármely leírt típusú egyenlet vizuálisan ábrázolható. Az ilyen, gráf formájában megrajzolt függőséget parabolának nevezzük. Különböző típusai az alábbi ábrán láthatók.

Minden parabolának van egy csúcsa, vagyis egy pont, ahonnan az ágai kijönnek. Ha a>0, akkor magasra mennek a végtelenbe, és amikor a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

A függvények vizuális megjelenítése segít bármilyen egyenlet megoldásában, beleértve a másodfokúakat is. Ezt a módszert grafikusnak nevezik. Az x változó értéke pedig az abszcissza koordinátája azokban a pontokban, ahol a gráfvonal metszi a 0x-et. A csúcs koordinátáit az imént adott x 0 = -b / 2a képlettel találhatjuk meg. És a kapott értéket behelyettesítve a függvény eredeti egyenletébe, megtudhatja, hogy y 0, azaz az y tengelyhez tartozó parabolacsúcs második koordinátája.

A parabola ágainak metszéspontja az abszcissza tengellyel

Sok példa van a másodfokú egyenletek megoldására, de vannak általános minták is. Tekintsük őket. Nyilvánvaló, hogy a gráf 0x tengellyel való metszéspontja a>0 esetén csak akkor lehetséges, ha y 0 negatív értékeket vesz fel. És a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Különben D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

A parabola grafikonjából a gyököket is meghatározhatja. Ennek a fordítottja is igaz. Vagyis ha vizuális képet kap másodfokú függvény nem könnyű, egyenlővé teheti a kifejezés jobb oldalát 0-val, és megoldhatja a kapott egyenletet. A 0x tengellyel való metszéspontok ismeretében pedig egyszerűbb az ábrázolás.

A történelemből

A négyzetes változót tartalmazó egyenletek segítségével a régi időkben nemcsak matematikai számításokat végeztek, hanem meghatározták a geometriai alakzatok területét. A régieknek szükségük volt ilyen számításokra a fizika és csillagászat terén tett grandiózus felfedezésekhez, valamint asztrológiai előrejelzésekhez.

A modern tudósok szerint Babilon lakói az elsők között oldották meg a másodfokú egyenleteket. Négy évszázaddal korunk eljövetele előtt történt. Természetesen számításaik alapvetően eltértek a jelenleg elfogadottaktól, és sokkal primitívebbnek bizonyultak. Például a mezopotámiai matematikusoknak fogalmuk sem volt a létezésről negatív számok. Nem ismerték azokat a finomságokat sem, amelyeket korunk diákjai ismertek.

Talán még Babilon tudósainál korábban is az indiai bölcs, Baudhayama vette fel a másodfokú egyenletek megoldását. Ez körülbelül nyolc évszázaddal Krisztus korszakának eljövetele előtt történt. Igaz, a másodrendű egyenletek, az általa megadott megoldási módszerek voltak a legegyszerűbbek. Rajta kívül a kínai matematikusok is érdeklődtek a hasonló kérdések iránt régen. Európában a másodfokú egyenleteket csak a 13. század elején kezdték megoldani, később azonban olyan nagy tudósok is alkalmazták őket munkáik során, mint Newton, Descartes és még sokan mások.

Éppen. Képletek és világos egyszerű szabályok szerint. Az első szakaszban

szükséges az adott egyenletet standard formára hozni, i.e. a kilátáshoz:

Ha az egyenlet ebben a formában már megadva van, akkor nem kell elvégeznie az első lépést. A legfontosabb a helyes

határozza meg az összes együtthatót A, bÉs c.

Képlet a másodfokú egyenlet gyökereinek megkeresésére.

A gyökjel alatti kifejezést ún diszkriminatív . Amint látja, az x megtalálásához mi

használat csak a, b és c. Azok. esélye másodfokú egyenlet. Csak óvatosan helyezze be

értékeket a, b és c ebbe a képletbe és számolj. Cserélje le az övék jelek!

Például, az egyenletben:

A =1; b = 3; c = -4.

Cserélje be az értékeket, és írja be:

A példa majdnem megoldva:

Ez a válasz.

A leggyakoribb hibák az értékek összetévesztése a, bÉs Val vel. Inkább helyettesítéssel

negatív értékeket a gyökérszámítási képletbe. Itt a részletes képlet ment

konkrét számokkal. Ha gond van a számítással, tedd meg!

Tegyük fel, hogy meg kell oldanunk a következő példát:

Itt a = -6; b = -5; c = -1

Mindent részletesen, gondosan, anélkül, hogy bármit is kihagynánk, minden jellel és zárójellel festünk:

A másodfokú egyenletek gyakran kissé eltérően néznek ki. Például így:

Most vegye figyelembe azokat a gyakorlati technikákat, amelyek drámaian csökkentik a hibák számát.

Első fogadás. Előtte ne légy lusta másodfokú egyenlet megoldása hozza szabványos formába.

Mit is jelent ez?

Tegyük fel, hogy bármilyen átalakítás után a következő egyenletet kapjuk:

Ne rohanjon megírni a gyökerek képletét! Szinte biztosan összekevered az esélyeket a, b és c.

Építsd fel helyesen a példát. Először x négyzet, majd négyzet nélkül, majd szabad tag. Mint ez:

Szabadulj meg a mínusztól. Hogyan? Az egész egyenletet meg kell szoroznunk -1-gyel. Kapunk:

És most nyugodtan felírhatja a gyökök képletét, kiszámíthatja a diszkriminánst és kiegészítheti a példát.

Döntse el egyedül. A 2-es és a -1-es gyökökhöz kell jutnia.

Második fogadás. Ellenőrizze a gyökereit! Által Vieta tétele.

A megadott másodfokú egyenletek megoldására, azaz. ha az együttható

x2+bx+c=0,

Akkorx 1 x 2 =c

x1 +x2 =−b

Egy teljes másodfokú egyenlethez, amelyben a≠1:

x 2+bx+c=0,

osszuk el az egész egyenletet V:

Ahol x 1És x 2 - az egyenlet gyökerei.

Fogadás harmadik. Ha az egyenletednek törtegyütthatói vannak, szabadulj meg a törtektől! Szorozni

egyenlet közös nevezőre.

Következtetés. Gyakorlati tippek:

1. Megoldás előtt a másodfokú egyenletet a standard formára hozzuk, felépítjük Jobb.

2. Ha a négyzetben az x előtt negatív együttható van, akkor azt úgy szűrjük ki, hogy mindent megszorozunk

egyenletek -1.

3. Ha az együtthatók törtek, akkor a törteket úgy távolítjuk el, hogy a teljes egyenletet megszorozzuk a megfelelő

tényező.

4. Ha x négyzet tiszta, az együttható eggyel egyenlő, a megoldás könnyen ellenőrizhető

Másodfokú egyenlet - könnyen megoldható! *Tovább a "KU" szövegben. Barátaim, úgy tűnik, hogy a matematikában ez könnyebb lehet, mint egy ilyen egyenlet megoldása. De valami azt súgta nekem, hogy sok embernek problémája van vele. Úgy döntöttem, megnézem, hány megjelenítést ad a Yandex kérésenként havonta. Íme, mi történt, nézze meg:


Mit jelent? Ez azt jelenti, hogy havonta körülbelül 70 ezren keresik ezt az információt, és ez a nyár, és mi lesz a tanév során - kétszer annyi kérés lesz. Ez nem meglepő, mert azok a srácok és lányok, akik már régen végeztek az iskolában és készülnek a vizsgára, keresik ezeket az információkat, és az iskolások is igyekeznek felfrissíteni az emlékezetüket.

Annak ellenére, hogy sok olyan oldal van, amely megmondja, hogyan kell megoldani ezt az egyenletet, úgy döntöttem, hogy én is hozzájárulok és közzéteszem az anyagot. Először is szeretném, ha látogatók érkeznének webhelyemre erre a kérésre; másodszor, más cikkekben, amikor megjelenik a „KU” beszéd, linket adok ehhez a cikkhez; harmadszor, kicsit többet mesélek a megoldásáról, mint azt más oldalakon szokták mondani. Kezdjük el! A cikk tartalma:

A másodfokú egyenlet a következő alakú egyenlet:

ahol az a együtthatók,btetszőleges számokkal pedig a≠0-val.

BAN BEN iskolai tanfolyam az anyagot a következő formában adjuk meg - az egyenletek három osztályra való felosztása feltételesen történik:

1. Legyen két gyökere.

2. * Csak egy gyökere van.

3. Nincsenek gyökerei. Itt érdemes megjegyezni, hogy nincsenek valódi gyökereik

Hogyan számítják ki a gyökereket? Éppen!

Kiszámoljuk a diszkriminánst. E „szörnyű” szó alatt egy nagyon egyszerű képlet rejlik:

A gyökérképletek a következők:

* Ezeket a képleteket fejből kell tudni.

Azonnal leírhatod és megoldhatod:

Példa:


1. Ha D > 0, akkor az egyenletnek két gyöke van.

2. Ha D = 0, akkor az egyenletnek egy gyöke van.

3. Ha D< 0, то уравнение не имеет действительных корней.

Nézzük az egyenletet:


Ebben az esetben, amikor a diszkrimináns nulla, az iskolai kurzus azt mondja, hogy egy gyökér keletkezik, itt kilenc. Így van, így van, de...

Ez az ábrázolás némileg téves. Valójában két gyökere van. Igen, igen, ne lepődj meg, kiderül, hogy két egyenlő gyök, és hogy matematikailag pontosak legyünk, akkor két gyöket kell írni a válaszba:

x 1 = 3 x 2 = 3

De ez így van - egy kis kitérő. Az iskolában leírhatod és elmondhatod, hogy csak egy gyökér van.

Most a következő példa:


Mint tudjuk, a negatív szám gyökét nem vonjuk ki, így ebben az esetben nincs megoldás.

Ez az egész döntési folyamat.

Másodfokú függvény.

Így néz ki a megoldás geometriailag. Ennek megértése rendkívül fontos (a jövőben az egyik cikkben részletesen elemezzük a másodfokú egyenlőtlenség megoldását).

Ez az űrlap függvénye:

ahol x és y változók

a, b, c - adott számokat, ahol a ≠ 0

A grafikon egy parabola:

Vagyis kiderül, hogy egy olyan másodfokú egyenlet megoldásával, ahol "y" egyenlő nullával, megtaláljuk a parabola és az x tengellyel való metszéspontjait. Ezek közül kettő lehet (a diszkrimináns pozitív), egy (a diszkrimináns nulla) vagy egy sem (a diszkrimináns negatív). Bővebben a másodfokú függvényről Megnézheti Inna Feldman cikke.

Vegye figyelembe a példákat:

1. példa: Döntse el 2x 2 +8 x–192=0

a=2 b=8 c= -192

D = b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Válasz: x 1 = 8 x 2 = -12

* Azonnal eloszthatja az egyenlet bal és jobb oldalát 2-vel, azaz egyszerűsítheti. A számítások könnyebbek lesznek.

2. példa: Döntsd el x2–22 x+121 = 0

a=1 b=-22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Azt kaptuk, hogy x 1 \u003d 11 és x 2 \u003d 11

A válaszban megengedhető, hogy x = 11 legyen.

Válasz: x = 11

3. példa: Döntsd el x 2 – 8x+72 = 0

a=1 b= -8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

A diszkrimináns negatív, valós számokban nincs megoldás.

Válasz: nincs megoldás

A diszkrimináns negatív. Van megoldás!

Itt az egyenlet megoldásáról lesz szó abban az esetben, ha kiderül negatív diszkrimináns. Tudsz valamit arról komplex számok? Nem részletezem itt, hogy miért és hol keletkeztek, és mi a konkrét szerepük és szükségességük a matematikában, ez egy nagy külön cikk témája.

A komplex szám fogalma.

Egy kis elmélet.

A z komplex szám alakja

z = a + bi

ahol a és b valós számok, ott az i az úgynevezett imaginárius egység.

a+bi EGY SZÁM, nem kiegészítés.

A képzeletbeli egység egyenlő mínusz egy gyökével:

Most nézzük meg az egyenletet:


Szerezz két konjugált gyökeret.

Hiányos másodfokú egyenlet.

Tekintsünk speciális eseteket, amikor a "b" vagy "c" együttható nulla (vagy mindkettő nulla). Könnyen, megkülönböztetés nélkül megoldhatók.

1. eset. b = 0 együttható.

Az egyenlet a következő alakot ölti:

Alakítsuk át:

Példa:

4x 2 -16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = -2

2. eset. Együttható c = 0.

Az egyenlet a következő alakot ölti:

Átalakítás, faktorizálás:

*A szorzat akkor egyenlő nullával, ha legalább az egyik tényező nulla.

Példa:

9x2 –45x = 0 => 9x (x-5) =0 => x = 0 vagy x-5 =0

x 1 = 0 x 2 = 5

3. eset: b = 0 és c = 0 együtthatók.

Itt jól látható, hogy az egyenlet megoldása mindig x = 0 lesz.

Az együtthatók hasznos tulajdonságai és mintái.

Vannak olyan tulajdonságok, amelyek nagy együtthatójú egyenletek megoldását teszik lehetővé.

Ax 2 + bx+ c=0 egyenlőség

a + b+ c = 0, Hogy

— ha az egyenlet együtthatóira Ax 2 + bx+ c=0 egyenlőség

a+ =-velb, Hogy

Ezek a tulajdonságok segítenek megoldani egy bizonyos típusú egyenletet.

1. példa: 5001 x 2 –4995 x – 6=0

Az együtthatók összege 5001+( 4995)+( 6) = 0, tehát

2. példa: 2501 x 2 +2507 x+6=0

Egyenlőség a+ =-velb, Eszközök

Az együtthatók szabályszerűségei.

1. Ha az ax 2 + bx + c \u003d 0 egyenletben a "b" együttható (a 2 +1), és a "c" együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 + (a 2 +1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d -a x 2 \u003d -1 / a.

Példa. Tekintsük a 6x 2 +37x+6 = 0 egyenletet.

x 1 \u003d -6 x 2 \u003d -1/6.

2. Ha az ax 2 - bx + c \u003d 0 egyenletben a "b" együttható (a 2 +1), és a "c" együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 - (a 2 + 1) ∙ x + a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d 1 / a.

Példa. Tekintsük a 15x 2 –226x +15 = 0 egyenletet.

x 1 = 15 x 2 = 1/15.

3. Ha az egyenletben ax 2 + bx - c = 0 "b" együttható egyenlő (a 2 – 1), és a „c” együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökerei egyenlők

ax 2 + (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d - a x 2 \u003d 1 / a.

Példa. Tekintsük a 17x 2 + 288x - 17 = 0 egyenletet.

x 1 \u003d - 17 x 2 = 1/17.

4. Ha az ax 2 - bx - c \u003d 0 egyenletben a "b" együttható egyenlő (a 2 - 1), és a c együttható számszerűen egyenlő az "a" együtthatóval, akkor a gyökei:

ax 2 - (a 2 -1) ∙ x - a \u003d 0 \u003d\u003e x 1 \u003d a x 2 \u003d - 1 / a.

Példa. Tekintsük a 10x2 - 99x -10 = 0 egyenletet.

x 1 \u003d 10 x 2 \u003d - 1/10

Vieta tétele.

Vieta tétele a híres francia matematikusról, Francois Vietáról kapta a nevét. Vieta tételével kifejezhető egy tetszőleges KU gyökeinek összege és szorzata együtthatóival.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Összegezve, a 14-es szám csak 5-öt és 9-et ad. Ezek a gyökerek. Egy bizonyos készség birtokában a bemutatott tétel segítségével számos másodfokú egyenletet azonnal szóban megoldhat.

Vieta tétele ráadásul. kényelmes, mert a másodfokú egyenlet szokásos módon (a diszkriminánson keresztül) történő megoldása után a kapott gyökök ellenőrizhetők. Azt javaslom, hogy ezt mindig csináld.

ÁTVITELI MÓDSZER

Ezzel a módszerrel az "a" együtthatót megszorozzák a szabad taggal, mintha "átviszik" rá, ezért ún. átviteli mód. Ezt a módszert akkor alkalmazzuk, ha egy egyenlet gyökereit könnyű megtalálni Vieta tételével, és ami a legfontosabb, ha a diszkrimináns egy pontos négyzet.

Ha A± b+c≠ 0, akkor az átviteli technikát használják, például:

2x 2 – 11x+ 5 = 0 (1) => x 2 – 11x+ 10 = 0 (2)

A (2) egyenlet Vieta-tétele szerint könnyen meghatározható, hogy x 1 \u003d 10 x 2 \u003d 1

Az egyenlet kapott gyökeit el kell osztani 2-vel (mivel a kettőt x 2-ből „dobták”, így kapjuk

x 1 \u003d 5 x 2 = 0,5.

Mi az indoklás? Nézze meg, mi történik.

Az (1) és (2) egyenlet diszkriminatív elemei a következők:

Ha megnézzük az egyenletek gyökereit, akkor csak különböző nevezőket kapunk, és az eredmény pontosan az x 2 együtthatótól függ:


A második (módosított) gyökerek 2-szer nagyobbak.

Ezért az eredményt elosztjuk 2-vel.

*Ha hármat dobunk, akkor az eredményt elosztjuk 3-mal, és így tovább.

Válasz: x 1 = 5 x 2 = 0,5

négyzetméter ur-ie és a vizsga.

A fontosságáról röviden elmondom - gyorsan és gondolkodás nélkül KELL DÖNTENI, fejből kell tudni a gyökerek és a megkülönböztető képleteit. A USE feladatok részét képező feladatok közül sok másodfokú egyenlet megoldására vezethető vissza (beleértve a geometriaiakat is).

Mit érdemes megjegyezni!

1. Az egyenlet alakja lehet "implicit". Például a következő bejegyzés lehetséges:

15+ 9x 2 - 45x = 0 vagy 15x + 42 + 9x 2 - 45x = 0 vagy 15 -5x + 10x 2 = 0.

Szabványos formába kell vinnie (hogy ne keveredjen össze a megoldás során).

2. Ne feledje, hogy x egy ismeretlen érték, és bármely más betűvel jelölhető - t, q, p, h és mások.

Kopjevszkaja vidéki középiskola

10 módszer a másodfokú egyenletek megoldására

Vezető: Patrikeeva Galina Anatoljevna,

matematika tanár

s.Kopyevo, 2007

1. A másodfokú egyenletek kialakulásának története

1.1 Másodfokú egyenletek az ókori Babilonban

1.2 Hogyan állította össze és oldotta meg Diophantus a másodfokú egyenleteket

1.3 Másodfokú egyenletek Indiában

1.4 Másodfokú egyenletek al-Khwarizmiban

1.5 Másodfokú egyenletek Európában XIII - XVII. század

1.6 Vieta tételéről

2. Másodfokú egyenletek megoldási módszerei

Következtetés

Irodalom

1. A másodfokú egyenletek kialakulásának története

1.1 Másodfokú egyenletek az ókori Babilonban

Az ókorban nemcsak az első, hanem a másodfokú egyenletek megoldásának szükségességét a katonai jellegű földterületek és földművek felkutatásával, valamint magának a csillagászatnak és a matematikának a fejlődésével kapcsolatos problémák megoldásának igénye okozta. A másodfokú egyenleteket Kr.e. 2000 körül tudták megoldani. e. babilóniaiak.

A modern algebrai jelölést alkalmazva elmondhatjuk, hogy ékírásos szövegeikben a hiányos szövegeken kívül vannak például teljes másodfokú egyenletek:

x 2 + x = ¾; x 2 - x = 14,5

Az egyenletek megoldására vonatkozó, a babiloni szövegekben megfogalmazott szabály lényegében egybeesik a modernnel, de nem ismert, hogy a babilóniaiak hogyan jutottak el ehhez a szabályhoz. Az eddig talált ékírásos szövegek szinte mindegyike csak a recept formájában megfogalmazott megoldási problémákat ad, a megtalálás módját nem jelzik.

Annak ellenére magas szint algebra fejlődése Babilonban, az ékírásos szövegekben nincs fogalma a negatív számnak és gyakori módszerek másodfokú egyenletek megoldásai.

1.2 Hogyan állította össze és oldotta meg Diophantus a másodfokú egyenleteket.

Diophantus aritmetikája nem tartalmazza az algebra szisztematikus kifejtését, hanem egy szisztematikus feladatsort tartalmaz magyarázatokkal kísérve, amelyeket különböző fokú egyenletek felállításával oldanak meg.

Az egyenletek összeállításakor Diophantus ügyesen választ ismeretleneket, hogy leegyszerűsítse a megoldást.

Itt van például az egyik feladata.

11. feladat."Keress két számot úgy, hogy az összegük 20, a szorzatuk pedig 96"

Diophantus a következőképpen érvel: a feladat feltételéből az következik, hogy a kívánt számok nem egyenlőek, hiszen ha egyenlőek lennének, akkor a szorzatuk nem 96-tal, hanem 100-zal lenne egyenlő. Így az egyikük több mint a fele lesz az összegüknek, ti. 10+x, a másik kisebb, i.e. 10-es. A különbség köztük 2x .

Ezért az egyenlet:

(10 + x) (10 - x) = 96

100 - x 2 = 96

x 2-4 = 0 (1)

Innen x = 2. A kívánt számok egyike 12 , Egyéb 8 . Megoldás x = -2 mert Diophantus nem létezik, mivel a görög matematika csak pozitív számokat ismert.

Ha ezt a feladatot úgy oldjuk meg, hogy a kívánt számok egyikét ismeretlennek választjuk, akkor eljutunk az egyenlet megoldásához

y(20 - y) = 96,

y 2 - 20y + 96 = 0. (2)


Nyilvánvaló, hogy Diophantus leegyszerűsíti a megoldást azzal, hogy a kívánt számok félkülönbségét választja ismeretlennek; sikerül a problémát egy hiányos másodfokú egyenlet (1) megoldására redukálnia.

1.3 Másodfokú egyenletek Indiában

A másodfokú egyenletekkel kapcsolatos problémák már megtalálhatók az "Aryabhattam" csillagászati ​​traktátusban, amelyet Aryabhatta indiai matematikus és csillagász állított össze 499-ben. Egy másik indiai tudós, Brahmagupta (7. század) felvázolta az egyetlen kanonikus formára redukált másodfokú egyenletek megoldásának általános szabályát:

ah 2+ b x = c, a > 0. (1)

Az (1) egyenletben az együtthatók, kivéve a A, negatív is lehet. Brahmagupta uralma lényegében egybeesik a miénkkel.

Az ókori Indiában gyakoriak voltak a nyilvános versenyek a nehéz problémák megoldásában. Az egyik régi indiai könyv a következőt írja az ilyen versenyekről: „Ahogy a nap felülmúlja ragyogásával a csillagokat, úgy a tanult ember is felülmúlja a világ dicsőségét. népszerelvények, algebrai feladatok javaslata és megoldása". A feladatokat gyakran költői formába öltöztették.

Itt van a XII. század híres indiai matematikusának egyik problémája. Bhaskara.

13. feladat.

„Egy nyüzsgő majomcsapat és tizenkettő a szőlőben…

Miután evett erőt, jól érezte magát. Ugrálni kezdtek, lógva...

Nyolcadik részük egy négyzetben Hány majom volt ott,

Szórakozás a réten. Mondja, ebben a nyájban?

Bhaskara megoldása azt jelzi, hogy tudott a másodfokú egyenletek gyökeinek kétértékűségéről (3. ábra).

A 13. feladatnak megfelelő egyenlet:

( x /8) 2 + 12 = x

Bhaskara ezt írja leple alatt:

x 2 - 64x = -768

és hogy ennek az egyenletnek a bal oldalát négyzetté egészítse ki, mindkét oldalt hozzáadja 32 2 , akkor kapok:

x 2 - 64x + 32 2 = -768 + 1024,

(x - 32) 2 = 256,

x - 32 = ± 16,

x 1 = 16, x 2 = 48.

1.4 Másodfokú egyenletek al-Khorezmiben

Al-Khorezmi algebrai értekezése a lineáris és másodfokú egyenletek osztályozását adja meg. A szerző 6 típusú egyenletet sorol fel, ezeket a következőképpen fejezi ki:

1) "A négyzetek egyenlőek a gyökökkel", azaz. ax 2 + c = b X.

2) "A négyzetek egyenlőek a számmal", azaz. ax 2 = s.

3) "A gyökök egyenlőek a számmal", azaz. ah = s.

4) "A négyzetek és a számok egyenlőek a gyökkel", azaz. ax 2 + c = b X.

5) "A négyzetek és a gyökök egyenlőek a számmal", azaz. ah 2+ bx = s.

6) "A gyökök és a számok egyenlőek a négyzetekkel", azaz. bx + c \u003d ax 2.

Al-Khwarizmi számára, aki kerülte a negatív számok használatát, ezen egyenletek mindegyike összeadás, nem kivonás. Ebben az esetben nyilvánvalóan nem veszik figyelembe azokat az egyenleteket, amelyeknek nincs pozitív megoldása. A szerző felvázolja ezen egyenletek megoldásának módszereit al-jabr és al-muqabala módszereivel. Döntései természetesen nem teljesen esnek egybe a miénkkel. Arról nem is beszélve, hogy pusztán retorikai, meg kell jegyezni például, hogy az első típusú hiányos másodfokú egyenlet megoldásakor

al-Khorezmi, mint minden matematikus a 17. század előtt, figyelembe veszi a nulla megoldást, valószínűleg azért, mert gyakorlati feladatokat nem számít. A teljes másodfokú egyenletek megoldása során al-Khorezmi meghatározott numerikus példák segítségével meghatározza a megoldás szabályait, majd a geometriai bizonyításokat.

14. feladat.„A négyzet és a 21-es szám egyenlő 10 gyökkel. Találd meg a gyökeret" (az x 2 + 21 = 10x egyenlet gyökerét feltételezve).

A szerző megoldása valahogy így hangzik: oszd el a gyökök számát felére, kapsz 5-öt, 5-öt szorozod meg önmagával, a szorzatból kivonod a 21-et, marad 4. Vedd a 4 gyökét, kapsz 2-t. Vonsz ki 2-t 5-ből, kapsz 3-at, ez lesz a kívánt gyök. Vagy adj hozzá 2-t az 5-höz, ami 7-et ad, ez is egy gyökér.

A Treatise al - Khorezmi az első olyan könyv, amely eljutott hozzánk, amelyben szisztematikusan leírják a másodfokú egyenletek osztályozását, és megadják a megoldásukra vonatkozó képleteket.

1.5 Másodfokú egyenletek Európában XIII - A XVII századokban

A másodfokú egyenletek megoldásának képleteit az al-Khorezmi mintájára Európában először az "Abakusz könyve" írta le, amelyet 1202-ben Leonardo Fibonacci olasz matematikus írt. Ez a terjedelmes munka, amely tükrözi a matematika hatását, mind az iszlám országaiban, mind az Ókori Görögország, a bemutatás teljességében és egyértelműségében egyaránt különbözik. A szerző önállóan kidolgozott néhány újat algebrai példák problémamegoldás, és Európában elsőként közelítette meg a negatív számok bevezetését. Könyve hozzájárult az algebrai ismeretek elterjedéséhez nemcsak Olaszországban, hanem Németországban, Franciaországban és más európai országokban is. Az „Abakusz könyvéből” sok feladat bekerült szinte az összes 16-17. századi európai tankönyvbe. részben pedig XVIII.

A másodfokú egyenletek megoldásának általános szabálya egyetlen kanonikus formára redukálva:

x 2+ bx = vele,

az együtthatók minden lehetséges előjel-kombinációjára b , Val vel Európában csak 1544-ben fogalmazta meg M. Stiefel.

Másodfokú egyenlet megoldási képletének levezetése in Általános nézet Vietnek vannak, de Viet csak pozitív gyökereket ismert fel. Tartaglia, Cardano, Bombelli olasz matematikusok az elsők között voltak a 16. században. Vegye figyelembe a pozitív, ill negatív gyökerek. Csak a XVII. Girard, Descartes, Newton és más tudósok munkájának köszönhetően a másodfokú egyenletek megoldásának módja modern megjelenést kap.

1.6 Vieta tételéről

A Vieta nevet viselő másodfokú egyenlet együtthatói és gyökei közötti összefüggést kifejező tételt először 1591-ben fogalmazta meg így: „Ha B + D szorozva A - A 2 , egyenlő BD, Azt A egyenlő BAN BENés egyenlő D ».

Ahhoz, hogy megértsük Vietát, emlékeznünk kell erre A, mint minden magánhangzó, számára az ismeretlent jelentette (a mi x), a magánhangzók BAN BEN, D- együtthatók az ismeretlenre. A modern algebra nyelvén Vieta fenti megfogalmazása azt jelenti: ha

(egy + b )x - x 2 = ab ,

x 2 - (a + b )x + a b = 0,

x 1 = a, x 2 = b .

Az egyenletek gyökei és együtthatói közötti kapcsolatot szimbólumokkal írt általános képletekkel kifejezve, Viet egységességet állapított meg az egyenletek megoldási módszereiben. Vieta szimbolikája azonban még messze van modern megjelenés. Nem ismerte fel a negatív számokat, ezért az egyenletek megoldása során csak azokat az eseteket vette figyelembe, ahol minden gyök pozitív.

2. Másodfokú egyenletek megoldási módszerei

A másodfokú egyenletek jelentik az alapot, amelyen az algebra fenséges építménye nyugszik. A másodfokú egyenleteket széles körben használják trigonometrikus, exponenciális, logaritmikus, irracionális és transzcendentális egyenletek és egyenlőtlenségek megoldására. Mindannyian tudjuk, hogyan kell másodfokú egyenleteket megoldani az iskolától (8. osztály) egészen az érettségiig.